|
| 1 | +__all__ = [ |
| 2 | + "ENV_NAME", |
| 3 | + "TASK_DATASET_NAME", |
| 4 | + "GradablePaperQAEnvironment", |
| 5 | + "LitQATaskDataset", |
| 6 | + "LitQAv2TaskDataset", |
| 7 | + "LitQAv2TaskSplit", |
| 8 | +] |
| 9 | + |
| 10 | +from abc import ABC |
| 11 | +from collections.abc import Awaitable, Callable, Sequence |
| 12 | +from enum import StrEnum |
| 13 | +from typing import TYPE_CHECKING, assert_never |
| 14 | + |
| 15 | +from aviary.env import ENV_REGISTRY, TASK_DATASET_REGISTRY, Frame, TaskDataset |
| 16 | +from aviary.message import Message |
| 17 | +from aviary.tools import ToolRequestMessage, ToolResponseMessage |
| 18 | + |
| 19 | +try: |
| 20 | + from ldp.alg.callbacks import ComputeTrajectoryMetricsMixin |
| 21 | +except ImportError: |
| 22 | + |
| 23 | + class ComputeTrajectoryMetricsMixin: # type: ignore[no-redef] |
| 24 | + """Placeholder for when ldp isn't installed.""" |
| 25 | + |
| 26 | + |
| 27 | +from paperqa.docs import Docs |
| 28 | +from paperqa.litqa import ( |
| 29 | + DEFAULT_EVAL_MODEL_NAME, |
| 30 | + DEFAULT_LABBENCH_HF_HUB_NAME, |
| 31 | + DEFAULT_REWARD_DISTRIBUTION, |
| 32 | + LitQAEvaluation, |
| 33 | + read_litqa_v2_from_hub, |
| 34 | +) |
| 35 | +from paperqa.llms import EmbeddingModel, LiteLLMModel, LLMModel |
| 36 | +from paperqa.types import Answer |
| 37 | + |
| 38 | +from .env import POPULATE_FROM_SETTINGS, PaperQAEnvironment |
| 39 | +from .models import QueryRequest |
| 40 | +from .tools import GenerateAnswer |
| 41 | + |
| 42 | +if TYPE_CHECKING: |
| 43 | + from ldp.data_structures import Trajectory |
| 44 | + |
| 45 | + |
| 46 | +class GradablePaperQAEnvironment(PaperQAEnvironment): |
| 47 | + """Extended environment that can grade answers.""" |
| 48 | + |
| 49 | + def __init__( |
| 50 | + self, |
| 51 | + query: QueryRequest, |
| 52 | + docs: Docs, |
| 53 | + llm_model: LiteLLMModel | None = POPULATE_FROM_SETTINGS, |
| 54 | + summary_llm_model: LiteLLMModel | None = POPULATE_FROM_SETTINGS, |
| 55 | + embedding_model: EmbeddingModel | None = POPULATE_FROM_SETTINGS, |
| 56 | + evaluation_from_answer: ( |
| 57 | + Callable[[Answer | str], Awaitable[LitQAEvaluation]] | None |
| 58 | + ) = None, |
| 59 | + rewards: Sequence[float] = DEFAULT_REWARD_DISTRIBUTION, |
| 60 | + evaluation_callback: Callable[[LitQAEvaluation], Awaitable] | None = None, |
| 61 | + **env_kwargs, |
| 62 | + ): |
| 63 | + super().__init__( |
| 64 | + query, docs, llm_model, summary_llm_model, embedding_model, **env_kwargs |
| 65 | + ) |
| 66 | + self._evaluation_from_answer = evaluation_from_answer |
| 67 | + self._evaluation_callback = evaluation_callback |
| 68 | + self._rewards = rewards |
| 69 | + |
| 70 | + async def step( |
| 71 | + self, action: ToolRequestMessage |
| 72 | + ) -> tuple[list[Message], float, bool, bool]: |
| 73 | + messages, reward, done, truncated = await super().step(action) |
| 74 | + if not done or not self._evaluation_from_answer: |
| 75 | + return messages, reward, done, truncated |
| 76 | + # Filter out non-answer messages (in case parallel tool calls) |
| 77 | + answer_tool_messages = [ |
| 78 | + m |
| 79 | + for m in messages |
| 80 | + if isinstance(m, ToolResponseMessage) |
| 81 | + and m.name == GenerateAnswer.gen_answer.__name__ |
| 82 | + ] |
| 83 | + if not answer_tool_messages: # No answer, so no positive reward |
| 84 | + return messages, reward, done, truncated |
| 85 | + if len(answer_tool_messages) != 1: |
| 86 | + raise NotImplementedError( |
| 87 | + f"Expected just one answer message, got {messages}." |
| 88 | + ) |
| 89 | + answer = GenerateAnswer.extract_answer_from_message( |
| 90 | + content=answer_tool_messages[0].content |
| 91 | + ) |
| 92 | + if not answer: |
| 93 | + return messages, reward, done, truncated |
| 94 | + evaluation = await self._evaluation_from_answer(answer) |
| 95 | + if evaluation_callback := self._evaluation_callback: |
| 96 | + await evaluation_callback(evaluation) |
| 97 | + return messages, reward + self._rewards[evaluation.value], done, truncated |
| 98 | + |
| 99 | + def export_frame(self) -> Frame: |
| 100 | + raise NotImplementedError("Didn't yet need to export a frame.") |
| 101 | + |
| 102 | + |
| 103 | +ENV_NAME = "paperqa-local" |
| 104 | +ENV_REGISTRY[ENV_NAME] = ( |
| 105 | + GradablePaperQAEnvironment.__module__, |
| 106 | + GradablePaperQAEnvironment.__name__, |
| 107 | +) |
| 108 | + |
| 109 | + |
| 110 | +class LitQATaskDataset( |
| 111 | + TaskDataset[GradablePaperQAEnvironment], ComputeTrajectoryMetricsMixin, ABC |
| 112 | +): |
| 113 | + """ |
| 114 | + Abstract base class for a task dataset of LitQA v1 or v2 questions. |
| 115 | +
|
| 116 | + This is an ABC because it's non-specific to a LitQA version. |
| 117 | + Examples include LitQA v1, v2, or a test stub version of LitQA. |
| 118 | + """ |
| 119 | + |
| 120 | + def __init__( |
| 121 | + self, |
| 122 | + base_query_request: QueryRequest, |
| 123 | + rewards: Sequence[float] = DEFAULT_REWARD_DISTRIBUTION, |
| 124 | + eval_model: LLMModel | str = DEFAULT_EVAL_MODEL_NAME, |
| 125 | + **env_kwargs, |
| 126 | + ): |
| 127 | + self._base_query_request = base_query_request |
| 128 | + self._rewards = rewards |
| 129 | + self._env_kwargs = env_kwargs |
| 130 | + self._eval_model = eval_model |
| 131 | + |
| 132 | + def _make_gradable_environment( |
| 133 | + self, |
| 134 | + ideal: str, |
| 135 | + distractors: str | list[str], |
| 136 | + question: str, |
| 137 | + use_unsure: bool = True, |
| 138 | + ) -> GradablePaperQAEnvironment: |
| 139 | + qa_prompt, evaluation_from_answer = LitQAEvaluation.from_question( |
| 140 | + ideal=ideal, |
| 141 | + distractors=distractors, |
| 142 | + question=question, |
| 143 | + use_unsure=use_unsure, |
| 144 | + eval_model=self._eval_model, |
| 145 | + ) |
| 146 | + query_request = self._base_query_request.model_copy() |
| 147 | + query_request.query = qa_prompt |
| 148 | + return GradablePaperQAEnvironment( |
| 149 | + query=query_request, |
| 150 | + evaluation_from_answer=evaluation_from_answer, |
| 151 | + rewards=self._rewards, |
| 152 | + **self._env_kwargs, |
| 153 | + ) |
| 154 | + |
| 155 | + def compute_trajectory_metrics( |
| 156 | + self, trajectories: "Sequence[Trajectory]" |
| 157 | + ) -> dict[str, list[float]]: |
| 158 | + return super().compute_trajectory_metrics(trajectories) | { |
| 159 | + "correct": [ |
| 160 | + int(traj.steps[-1].reward == self._rewards[0]) for traj in trajectories |
| 161 | + ], |
| 162 | + "correct_unsure": [ |
| 163 | + int(traj.steps[-1].reward in {self._rewards[0], self._rewards[1]}) |
| 164 | + for traj in trajectories |
| 165 | + ], |
| 166 | + } |
| 167 | + |
| 168 | + |
| 169 | +class LitQAv2TaskSplit(StrEnum): |
| 170 | + TRAIN = "train" |
| 171 | + EVAL = "eval" |
| 172 | + |
| 173 | + |
| 174 | +class LitQAv2TaskDataset(LitQATaskDataset): |
| 175 | + """Task dataset of LitQA v2 questions.""" |
| 176 | + |
| 177 | + def __init__( |
| 178 | + self, |
| 179 | + *args, |
| 180 | + labbench_dataset: str = DEFAULT_LABBENCH_HF_HUB_NAME, |
| 181 | + split: str | LitQAv2TaskSplit = LitQAv2TaskSplit.EVAL, |
| 182 | + **kwargs, |
| 183 | + ): |
| 184 | + super().__init__(*args, **kwargs) |
| 185 | + train_df, eval_df = read_litqa_v2_from_hub(labbench_dataset) |
| 186 | + split = LitQAv2TaskSplit(split) |
| 187 | + if split == LitQAv2TaskSplit.TRAIN: |
| 188 | + self.data = train_df |
| 189 | + elif split == LitQAv2TaskSplit.EVAL: |
| 190 | + self.data = eval_df |
| 191 | + else: |
| 192 | + assert_never(split) |
| 193 | + |
| 194 | + def get_new_env_by_idx(self, idx: int) -> GradablePaperQAEnvironment: |
| 195 | + return self._make_gradable_environment( |
| 196 | + ideal=self.data.iloc[idx].ideal, |
| 197 | + distractors=self.data.iloc[idx].distractors, |
| 198 | + question=self.data.iloc[idx].question, |
| 199 | + ) |
| 200 | + |
| 201 | + def __len__(self) -> int: |
| 202 | + return len(self.data) |
| 203 | + |
| 204 | + |
| 205 | +TASK_DATASET_NAME = "litqa-v2" |
| 206 | +TASK_DATASET_REGISTRY[TASK_DATASET_NAME] = ( |
| 207 | + LitQAv2TaskDataset.__module__, |
| 208 | + LitQAv2TaskDataset.__name__, |
| 209 | +) |
0 commit comments