1
+ """
2
+ Problem Link: https://leetcode.com/problems/product-of-the-last-k-numbers/
3
+
4
+ Implement the class ProductOfNumbers that supports two methods:
5
+ 1. add(int num)
6
+ Adds the number num to the back of the current list of numbers.
7
+ 2. getProduct(int k)
8
+
9
+ Returns the product of the last k numbers in the current list.
10
+ You can assume that always the current list has at least k numbers.
11
+ At any time, the product of any contiguous sequence of numbers will fit
12
+ into a single 32-bit integer without overflowing.
13
+
14
+ Example:
15
+
16
+ Input
17
+ ["ProductOfNumbers","add","add","add","add","add","getProduct","getProduct","getProduct",
18
+ "add","getProduct"]
19
+ [[],[3],[0],[2],[5],[4],[2],[3],[4],[8],[2]]
20
+ Output
21
+ [null,null,null,null,null,null,20,40,0,null,32]
22
+
23
+ Explanation
24
+ ProductOfNumbers productOfNumbers = new ProductOfNumbers();
25
+ productOfNumbers.add(3); // [3]
26
+ productOfNumbers.add(0); // [3,0]
27
+ productOfNumbers.add(2); // [3,0,2]
28
+ productOfNumbers.add(5); // [3,0,2,5]
29
+ productOfNumbers.add(4); // [3,0,2,5,4]
30
+ productOfNumbers.getProduct(2); // return 20. The product of the last 2 numbers is 5 * 4 = 20
31
+ productOfNumbers.getProduct(3); // return 40. The product of the last 3 numbers is 2 * 5 * 4 = 40
32
+ productOfNumbers.getProduct(4); // return 0. The product of the last 4 numbers is 0 * 2 * 5 * 4 = 0
33
+ productOfNumbers.add(8); // [3,0,2,5,4,8]
34
+ productOfNumbers.getProduct(2); // return 32. The product of the last 2 numbers is 4 * 8 = 32
35
+
36
+ Constraints:
37
+ There will be at most 40000 operations considering both add and getProduct.
38
+ 0 <= num <= 100
39
+ 1 <= k <= 40000
40
+ """
41
+ class ProductOfNumbers :
42
+
43
+ def __init__ (self ):
44
+ self .product = [1 ]
45
+
46
+ def add (self , num : int ) -> None :
47
+ if num == 0 :
48
+ self .product = [1 ]
49
+ else :
50
+ self .product .append (self .product [- 1 ]* num )
51
+
52
+ def getProduct (self , k : int ) -> int :
53
+ if k >= len (self .product ):
54
+ return 0
55
+ return self .product [- 1 ] // self .product [- k - 1 ]
56
+
57
+
58
+ # Your ProductOfNumbers object will be instantiated and called as such:
59
+ # obj = ProductOfNumbers()
60
+ # obj.add(num)
61
+ # param_2 = obj.getProduct(k)
0 commit comments