diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt index 70be604e4b0d3..8f9cd652447ab 100644 --- a/src/CMakeLists.txt +++ b/src/CMakeLists.txt @@ -22,8 +22,9 @@ add_library(llama llama-io.cpp llama-kv-cache-unified.cpp llama-kv-cache-unified-iswa.cpp - llama-kv-cache-recurrent.cpp llama-memory.cpp + llama-memory-hybrid.cpp + llama-memory-recurrent.cpp llama-mmap.cpp llama-model-loader.cpp llama-model-saver.cpp diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp index de8d289cf967e..0bc60565df12c 100644 --- a/src/llama-arch.cpp +++ b/src/llama-arch.cpp @@ -147,6 +147,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = { { LLM_KV_ATTENTION_SCALE, "%s.attention.scale" }, { LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" }, { LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" }, + { LLM_KV_ATTENTION_LAYER_INDICES, "%s.attention.layer_indices" }, { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" }, { LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" }, @@ -1816,3 +1817,25 @@ llm_arch llm_arch_from_string(const std::string & name) { const llm_tensor_info & llm_tensor_info_for(llm_tensor tensor) { return LLM_TENSOR_INFOS.at(tensor); } + +bool llm_arch_is_recurrent(const llm_arch & arch) { + switch (arch) { + case LLM_ARCH_MAMBA: + case LLM_ARCH_RWKV6: + case LLM_ARCH_RWKV6QWEN2: + case LLM_ARCH_RWKV7: + case LLM_ARCH_ARWKV7: + return true; + default: + return false; + } +} + +bool llm_arch_is_hybrid(const llm_arch & arch) { + // TODO: There are currently no hybrid models! Once there are, this will be + // the place to identify them + switch (arch) { + default: + return false; + } +} diff --git a/src/llama-arch.h b/src/llama-arch.h index 3e8a61da3c13e..51b242c66b824 100644 --- a/src/llama-arch.h +++ b/src/llama-arch.h @@ -151,6 +151,7 @@ enum llm_kv { LLM_KV_ATTENTION_SCALE, LLM_KV_ATTENTION_KEY_LENGTH_MLA, LLM_KV_ATTENTION_VALUE_LENGTH_MLA, + LLM_KV_ATTENTION_LAYER_INDICES, LLM_KV_ROPE_DIMENSION_COUNT, LLM_KV_ROPE_DIMENSION_SECTIONS, @@ -439,3 +440,6 @@ const char * llm_arch_name(llm_arch arch); llm_arch llm_arch_from_string(const std::string & name); const llm_tensor_info & llm_tensor_info_for(llm_tensor tensor); + +bool llm_arch_is_recurrent(const llm_arch & arch); +bool llm_arch_is_hybrid (const llm_arch & arch); diff --git a/src/llama-graph.cpp b/src/llama-graph.cpp index 337fb5cb0df36..65d98cbbb3987 100644 --- a/src/llama-graph.cpp +++ b/src/llama-graph.cpp @@ -6,7 +6,8 @@ #include "llama-kv-cache-unified.h" #include "llama-kv-cache-unified-iswa.h" -#include "llama-kv-cache-recurrent.h" +#include "llama-memory-hybrid.h" +#include "llama-memory-recurrent.h" #include <cassert> #include <cmath> @@ -238,18 +239,18 @@ void llm_graph_input_cls::set_input(const llama_ubatch * ubatch) { } } -void llm_graph_input_s_copy::set_input(const llama_ubatch * ubatch) { +void llm_graph_input_rs::set_input(const llama_ubatch * ubatch) { GGML_UNUSED(ubatch); - const int64_t n_kv = kv_state->get_n_kv(); + const int64_t n_rs = mem_state->get_n_rs(); if (s_copy) { GGML_ASSERT(ggml_backend_buffer_is_host(s_copy->buffer)); int32_t * data = (int32_t *) s_copy->data; // assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n - for (uint32_t i = 0; i < n_kv; ++i) { - data[i] = kv_state->s_copy(i); + for (uint32_t i = 0; i < n_rs; ++i) { + data[i] = mem_state->s_copy(i); } } } @@ -403,6 +404,24 @@ void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) { } } +void llm_graph_input_mem_hybrid::set_input(const llama_ubatch * ubatch) { + if (self_kq_mask) { + mem_state->get_state_attn()->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn); + } + + const int64_t n_rs = mem_state->get_state_recr()->get_n_rs(); + + if (s_copy) { + GGML_ASSERT(ggml_backend_buffer_is_host(s_copy->buffer)); + int32_t * data = (int32_t *) s_copy->data; + + // assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n + for (uint32_t i = 0; i < n_rs; ++i) { + data[i] = mem_state->get_state_recr()->s_copy(i); + } + } +} + // // llm_graph_context // @@ -961,23 +980,6 @@ ggml_tensor * llm_graph_context::build_inp_cls() const { return cur; } -ggml_tensor * llm_graph_context::build_inp_s_copy() const { - const auto * kv_state = static_cast<const llama_kv_cache_recurrent_state *>(mstate); - - auto inp = std::make_unique<llm_graph_input_s_copy>(kv_state); - - const auto n_kv = kv_state->get_n_kv(); - - auto & cur = inp->s_copy; - - cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_kv); - ggml_set_input(cur); - - res->add_input(std::move(inp)); - - return cur; -} - ggml_tensor * llm_graph_context::build_inp_cross_embd() const { auto inp = std::make_unique<llm_graph_input_cross_embd>(cross); @@ -1047,6 +1049,33 @@ ggml_tensor * llm_graph_context::build_pos_bias(ggml_tensor * pos_bucket, ggml_t return pos_bias; } +llm_graph_input_mem_hybrid * llm_graph_context::build_inp_mem_hybrid() const { + const auto * mem_state = static_cast<const llama_memory_hybrid_state *>(mstate); + + auto inp = std::make_unique<llm_graph_input_mem_hybrid>(hparams, cparams, mem_state); + + { + GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "Hybrid recurrent is not supported with SWA attention layers"); + + const auto n_kv = inp->mem_state->get_state_attn()->get_n_kv(); + + inp->self_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)); + //cb(inp->self_kq_mask, "KQ_mask", -1); + ggml_set_input(inp->self_kq_mask); + + inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask; + } + + { + const auto n_rs = mem_state->get_state_recr()->get_n_rs(); + + inp->s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_rs); + ggml_set_input(inp->s_copy); + } + + return (llm_graph_input_mem_hybrid *) res->add_input(std::move(inp)); +} + ggml_tensor * llm_graph_context::build_attn_mha( ggml_cgraph * gf, ggml_tensor * q, @@ -1291,36 +1320,6 @@ ggml_tensor * llm_graph_context::build_attn( return cur; } -llm_graph_input_attn_kv_unified_iswa * llm_graph_context::build_attn_inp_kv_unified_iswa() const { - const auto * kv_state = static_cast<const llama_kv_cache_unified_iswa_state *>(mstate); - - auto inp = std::make_unique<llm_graph_input_attn_kv_unified_iswa>(hparams, cparams, kv_state); - - { - const auto n_kv = kv_state->get_base()->get_n_kv(); - - inp->self_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)); - //cb(inp->self_kq_mask, "KQ_mask", -1); - ggml_set_input(inp->self_kq_mask); - - inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask; - } - - { - GGML_ASSERT(hparams.swa_type != LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache_unified for non-SWA"); - - const auto n_kv = kv_state->get_swa()->get_n_kv(); - - inp->self_kq_mask_swa = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)); - //cb(inp->self_kq_mask_swa, "KQ_mask_swa", -1); - ggml_set_input(inp->self_kq_mask_swa); - - inp->self_kq_mask_swa_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask_swa, GGML_TYPE_F16) : inp->self_kq_mask_swa; - } - - return (llm_graph_input_attn_kv_unified_iswa *) res->add_input(std::move(inp)); -} - ggml_tensor * llm_graph_context::build_attn( llm_graph_input_attn_kv_unified_iswa * inp, ggml_cgraph * gf, @@ -1430,20 +1429,99 @@ ggml_tensor * llm_graph_context::build_attn( return cur; } -ggml_tensor * llm_graph_context::build_recurrent_state( - ggml_cgraph * gf, - ggml_tensor * s, - ggml_tensor * state_copy, - int32_t state_size, - int32_t n_seqs, - bool avoid_copies) const { - const auto * kv_state = static_cast<const llama_kv_cache_recurrent_state *>(mstate); - - const auto n_kv = kv_state->get_n_kv(); - const auto kv_head = kv_state->get_head(); - const auto rs_zero = kv_state->get_rs_z(); +ggml_tensor * llm_graph_context::build_attn( + llm_graph_input_mem_hybrid * inp, + ggml_cgraph * gf, + ggml_tensor * wo, + ggml_tensor * wo_b, + ggml_tensor * q_cur, + ggml_tensor * k_cur, + ggml_tensor * v_cur, + ggml_tensor * kq_b, + ggml_tensor * v_mla, + float kq_scale, + int il) const { + // these nodes are added to the graph together so that they are not reordered + // by doing so, the number of splits in the graph is reduced + ggml_build_forward_expand(gf, q_cur); + ggml_build_forward_expand(gf, k_cur); + ggml_build_forward_expand(gf, v_cur); + + const auto * kv_state = static_cast<const llama_memory_hybrid_state *>(mstate)->get_state_attn(); + + // store to KV cache + { + ggml_build_forward_expand(gf, kv_state->cpy_k(ctx0, k_cur, il)); + ggml_build_forward_expand(gf, kv_state->cpy_v(ctx0, v_cur, il)); + } + + const auto & kq_mask = inp->get_kq_mask(); + + ggml_tensor * q = q_cur; + ggml_tensor * k = kv_state->get_k(ctx0, il); + ggml_tensor * v = kv_state->get_v(ctx0, il); + + ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale); + cb(cur, "kqv_out", il); + + if (wo) { + cur = build_lora_mm(wo, cur); + if (arch == LLM_ARCH_GLM4) { + // GLM4 seems to have numerical issues with half-precision accumulators + ggml_mul_mat_set_prec(cur, GGML_PREC_F32); + } + } + + if (wo_b) { + cur = ggml_add(ctx0, cur, wo_b); + } + + return cur; +} + +llm_graph_input_attn_kv_unified_iswa * llm_graph_context::build_attn_inp_kv_unified_iswa() const { + const auto * kv_state = static_cast<const llama_kv_cache_unified_iswa_state *>(mstate); + + auto inp = std::make_unique<llm_graph_input_attn_kv_unified_iswa>(hparams, cparams, kv_state); - ggml_tensor * states = ggml_reshape_2d(ctx0, s, state_size, kv_state->get_size()); + { + const auto n_kv = kv_state->get_base()->get_n_kv(); + + inp->self_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)); + //cb(inp->self_kq_mask, "KQ_mask", -1); + ggml_set_input(inp->self_kq_mask); + + inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask; + } + + { + GGML_ASSERT(hparams.swa_type != LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache_unified for non-SWA"); + + const auto n_kv = kv_state->get_swa()->get_n_kv(); + + inp->self_kq_mask_swa = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)); + //cb(inp->self_kq_mask_swa, "KQ_mask_swa", -1); + ggml_set_input(inp->self_kq_mask_swa); + + inp->self_kq_mask_swa_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask_swa, GGML_TYPE_F16) : inp->self_kq_mask_swa; + } + + return (llm_graph_input_attn_kv_unified_iswa *) res->add_input(std::move(inp)); +} + +ggml_tensor * llm_graph_context::build_rs( + ggml_cgraph * gf, + ggml_tensor * s, + ggml_tensor * state_copy, + int32_t state_size, + int32_t n_seqs, + uint32_t n_kv, + uint32_t kv_head, + uint32_t kv_size, + int32_t rs_zero, + bool avoid_copies) const { + + ggml_tensor * states = ggml_reshape_2d(ctx0, s, state_size, kv_size); // Clear a single state which will then be copied to the other cleared states. // Note that this is a no-op when the view is zero-sized. @@ -1474,22 +1552,59 @@ ggml_tensor * llm_graph_context::build_recurrent_state( return output_states; } +llm_graph_input_rs * llm_graph_context::build_rs_inp() const { + const auto * kv_state = static_cast<const llama_memory_recurrent_state *>(mstate); + + auto inp = std::make_unique<llm_graph_input_rs>(kv_state); + + const auto n_rs = kv_state->get_n_rs(); + + inp->s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_rs); + ggml_set_input(inp->s_copy); + + return (llm_graph_input_rs *) res->add_input(std::move(inp)); +} + +ggml_tensor * llm_graph_context::build_rs( + llm_graph_input_rs * inp, + ggml_cgraph * gf, + ggml_tensor * s, + int32_t state_size, + int32_t n_seqs, + bool avoid_copies) const { + const auto * kv_state = static_cast<const llama_memory_recurrent_state *>(mstate); + + return build_rs(gf, s, inp->s_copy, state_size, n_seqs, kv_state->get_n_rs(), kv_state->get_head(), kv_state->get_size(), kv_state->get_rs_z(), avoid_copies); +} + +ggml_tensor * llm_graph_context::build_rs( + llm_graph_input_mem_hybrid * inp, + ggml_cgraph * gf, + ggml_tensor * s, + int32_t state_size, + int32_t n_seqs, + bool avoid_copies) const { + const auto * kv_state = static_cast<const llama_memory_hybrid_state *>(mstate)->get_state_recr(); + + return build_rs(gf, s, inp->s_copy, state_size, n_seqs, kv_state->get_n_rs(), kv_state->get_head(), kv_state->get_size(), kv_state->get_rs_z(), avoid_copies); +} + ggml_tensor * llm_graph_context::build_rwkv_token_shift_load( - ggml_cgraph * gf, - ggml_tensor * state_copy, - const llama_ubatch & ubatch, + llm_graph_input_rs * inp, + ggml_cgraph * gf, + const llama_ubatch & ubatch, int il) const { - const auto * kv_state = static_cast<const llama_kv_cache_recurrent_state *>(mstate); + const auto * kv_state = static_cast<const llama_memory_recurrent_state *>(mstate); const auto token_shift_count = hparams.token_shift_count; const int64_t n_seqs = ubatch.n_seqs; - ggml_tensor * token_shift_all = kv_state->get_k_l(il); + ggml_tensor * token_shift_all = kv_state->get_r_l(il); - ggml_tensor * token_shift = build_recurrent_state( - gf, token_shift_all, state_copy, - hparams.n_embd_k_s(), n_seqs); + ggml_tensor * token_shift = build_rs( + inp, gf, token_shift_all, + hparams.n_embd_r(), n_seqs); token_shift = ggml_reshape_3d(ctx0, token_shift, hparams.n_embd, token_shift_count, n_seqs); @@ -1500,7 +1615,7 @@ ggml_tensor * llm_graph_context::build_rwkv_token_shift_store( ggml_tensor * token_shift, const llama_ubatch & ubatch, int il) const { - const auto * kv_state = static_cast<const llama_kv_cache_recurrent_state *>(mstate); + const auto * kv_state = static_cast<const llama_memory_recurrent_state *>(mstate); const auto token_shift_count = hparams.token_shift_count; const auto n_embd = hparams.n_embd; @@ -1512,7 +1627,7 @@ ggml_tensor * llm_graph_context::build_rwkv_token_shift_store( return ggml_cpy( ctx0, ggml_view_1d(ctx0, token_shift, n_embd * n_seqs * token_shift_count, 0), - ggml_view_1d(ctx0, kv_state->get_k_l(il), hparams.n_embd_k_s()*n_seqs, hparams.n_embd_k_s()*kv_head*ggml_element_size(kv_state->get_k_l(il))) + ggml_view_1d(ctx0, kv_state->get_r_l(il), hparams.n_embd_r()*n_seqs, hparams.n_embd_r()*kv_head*ggml_element_size(kv_state->get_r_l(il))) ); } diff --git a/src/llama-graph.h b/src/llama-graph.h index 87813119b1a3c..58845e284abed 100644 --- a/src/llama-graph.h +++ b/src/llama-graph.h @@ -21,7 +21,8 @@ struct llama_memory_state_i; class llama_kv_cache_unified_state; class llama_kv_cache_unified_iswa_state; -class llama_kv_cache_recurrent_state; +class llama_memory_recurrent_state; +class llama_memory_hybrid_state; // certain models (typically multi-modal) can produce different types of graphs enum llm_graph_type { @@ -188,16 +189,16 @@ class llm_graph_input_cls : public llm_graph_input_i { const llama_cparams & cparams; }; -class llm_graph_input_s_copy : public llm_graph_input_i { +class llm_graph_input_rs : public llm_graph_input_i { public: - llm_graph_input_s_copy(const llama_kv_cache_recurrent_state * kv_state) : kv_state(kv_state) {} - virtual ~llm_graph_input_s_copy() = default; + llm_graph_input_rs(const llama_memory_recurrent_state * mem_state) : mem_state(mem_state) {} + virtual ~llm_graph_input_rs() = default; void set_input(const llama_ubatch * ubatch) override; ggml_tensor * s_copy; // I32 [kv_size] - const llama_kv_cache_recurrent_state * kv_state; + const llama_memory_recurrent_state * mem_state; }; class llm_graph_input_cross_embd : public llm_graph_input_i { @@ -300,6 +301,33 @@ class llm_graph_input_attn_cross : public llm_graph_input_i { const llama_cross * cross = nullptr; }; +class llm_graph_input_mem_hybrid : public llm_graph_input_i { +public: + llm_graph_input_mem_hybrid( + const llama_hparams & hparams, + const llama_cparams & cparams, + const llama_memory_hybrid_state * mem_state) : + hparams(hparams), + cparams(cparams), + mem_state(mem_state) { + } + virtual ~llm_graph_input_mem_hybrid() = default; + + void set_input(const llama_ubatch * ubatch) override; + + ggml_tensor * s_copy; // I32 [kv_size] + + ggml_tensor * get_kq_mask() const { return self_kq_mask_cnv; } + + ggml_tensor * self_kq_mask = nullptr; // F32 [n_kv, n_batch] + ggml_tensor * self_kq_mask_cnv = nullptr; // [n_kv, n_batch] + + const llama_hparams & hparams; + const llama_cparams & cparams; + + const llama_memory_hybrid_state * mem_state; +}; + // // llm_graph_result // @@ -508,13 +536,14 @@ struct llm_graph_context { ggml_tensor * build_inp_out_ids() const; ggml_tensor * build_inp_mean() const; ggml_tensor * build_inp_cls() const; - ggml_tensor * build_inp_s_copy() const; ggml_tensor * build_inp_cross_embd() const; ggml_tensor * build_inp_pos_bucket_enc() const; ggml_tensor * build_inp_pos_bucket_dec() const; ggml_tensor * build_pos_bias(ggml_tensor * pos_bucket, ggml_tensor * attn_rel_b) const; + llm_graph_input_mem_hybrid * build_inp_mem_hybrid() const; + // // attention // @@ -589,22 +618,62 @@ struct llm_graph_context { float kq_scale, int il) const; + ggml_tensor * build_attn( + llm_graph_input_mem_hybrid * inp, + ggml_cgraph * gf, + ggml_tensor * wo, + ggml_tensor * wo_b, + ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens] + ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens] + ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens] + ggml_tensor * kq_b, + ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v] + float kq_scale, + int il) const; // // recurrent // - ggml_tensor * build_recurrent_state( - ggml_cgraph * gf, - ggml_tensor * s, - ggml_tensor * state_copy, - int32_t state_size, - int32_t n_seqs, - bool avoid_copies = false) const; + // TODO: avoid notion of "kv" + // TODO: move this implementation to llama_memory_recurrent. + // this is analogous to llama_kv_cache_unified::cpy_k / cpy_v + // when moving, avoid passing `ggml_cgraph` - only pass `ggml_context`. would likely need to split the + // implementation in 2 separate methods. the goal is to avoid calling `ggml_build_forward_expand` in + // `llama_memory_recurrent` + ggml_tensor * build_rs( + ggml_cgraph * gf, + ggml_tensor * s, + ggml_tensor * state_copy, + int32_t state_size, + int32_t n_seqs, + uint32_t n_kv, + uint32_t kv_head, + uint32_t kv_size, + int32_t rs_zero, + bool avoid_copies = false) const; + + llm_graph_input_rs * build_rs_inp() const; + + ggml_tensor * build_rs( + llm_graph_input_rs * inp, + ggml_cgraph * gf, + ggml_tensor * s, + int32_t state_size, + int32_t n_seqs, + bool avoid_copies = false) const; + + ggml_tensor * build_rs( + llm_graph_input_mem_hybrid * inp, + ggml_cgraph * gf, + ggml_tensor * s, + int32_t state_size, + int32_t n_seqs, + bool avoid_copies = false) const; ggml_tensor * build_rwkv_token_shift_load( - ggml_cgraph * gf, - ggml_tensor * state_copy, - const llama_ubatch & ubatch, + llm_graph_input_rs * inp, + ggml_cgraph * gf, + const llama_ubatch & ubatch, int il) const; ggml_tensor * build_rwkv_token_shift_store( diff --git a/src/llama-hparams.cpp b/src/llama-hparams.cpp index 1499eb08a5dd9..b40566ced99ee 100644 --- a/src/llama-hparams.cpp +++ b/src/llama-hparams.cpp @@ -65,7 +65,7 @@ uint32_t llama_hparams::n_embd_v_gqa(uint32_t il) const { return n_embd_head_v * n_head_kv; } -uint32_t llama_hparams::n_embd_k_s() const { +uint32_t llama_hparams::n_embd_r() const { if (wkv_head_size != 0) { // for RWKV models return token_shift_count * n_embd; @@ -76,7 +76,7 @@ uint32_t llama_hparams::n_embd_k_s() const { return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner; } -uint32_t llama_hparams::n_embd_v_s() const { +uint32_t llama_hparams::n_embd_s() const { if (wkv_head_size != 0) { // corresponds to RWKV's wkv_states size return n_embd * wkv_head_size; @@ -86,6 +86,10 @@ uint32_t llama_hparams::n_embd_v_s() const { return ssm_d_state * ssm_d_inner; } +bool llama_hparams::is_recurrent(uint32_t il) const { + return recurrent_layer_arr[il]; +} + bool llama_hparams::is_swa(uint32_t il) const { if (il < n_layer) { return swa_layers[il]; diff --git a/src/llama-hparams.h b/src/llama-hparams.h index b2bcb8b01a18b..82bb5b6084946 100644 --- a/src/llama-hparams.h +++ b/src/llama-hparams.h @@ -115,6 +115,9 @@ struct llama_hparams { uint32_t ssm_d_state = 0; uint32_t ssm_dt_rank = 0; + // for hybrid state space models + std::array<bool, LLAMA_MAX_LAYERS> recurrent_layer_arr; + bool ssm_dt_b_c_rms = false; float f_clamp_kqv = 0.0f; @@ -181,10 +184,13 @@ struct llama_hparams { // dimension of the rolling state embeddings // corresponds to Mamba's conv_states size or RWKV's token_shift states size - uint32_t n_embd_k_s() const; + uint32_t n_embd_r() const; // dimension of the recurrent state embeddings - uint32_t n_embd_v_s() const; + uint32_t n_embd_s() const; + + // whether or not the given layer is recurrent (for hybrid models) + bool is_recurrent(uint32_t il) const; bool is_swa(uint32_t il) const; }; diff --git a/src/llama-kv-cache-unified-iswa.cpp b/src/llama-kv-cache-unified-iswa.cpp index a4a4c2b1b859d..a869b1de8c2a3 100644 --- a/src/llama-kv-cache-unified-iswa.cpp +++ b/src/llama-kv-cache-unified-iswa.cpp @@ -197,21 +197,19 @@ llama_kv_cache_unified * llama_kv_cache_unified_iswa::get_swa() const { llama_kv_cache_unified_iswa_state::llama_kv_cache_unified_iswa_state(llama_memory_status status) : status(status) {} llama_kv_cache_unified_iswa_state::llama_kv_cache_unified_iswa_state( - llama_kv_cache_unified_iswa * kv) : status(LLAMA_MEMORY_STATUS_SUCCESS) { - state_base = kv->get_base()->init_full(); - state_swa = kv->get_swa ()->init_full(); - - status = llama_memory_status_combine(state_base->get_status(), state_swa->get_status()); + llama_kv_cache_unified_iswa * kv) : + state_base(kv->get_base()->init_full()), + state_swa (kv->get_swa ()->init_full()), + status(llama_memory_status_combine(state_base->get_status(), state_swa->get_status())) { } llama_kv_cache_unified_iswa_state::llama_kv_cache_unified_iswa_state( llama_kv_cache_unified_iswa * kv, llama_context * lctx, - bool optimize) : status(LLAMA_MEMORY_STATUS_SUCCESS) { - state_base = kv->get_base()->init_update(lctx, optimize); - state_swa = kv->get_swa ()->init_update(lctx, optimize); - - status = llama_memory_status_combine(state_base->get_status(), state_swa->get_status()); + bool optimize) : + state_base(kv->get_base()->init_update(lctx, optimize)), + state_swa (kv->get_swa ()->init_update(lctx, optimize)), + status(llama_memory_status_combine(state_base->get_status(), state_swa->get_status())) { } llama_kv_cache_unified_iswa_state::llama_kv_cache_unified_iswa_state( @@ -219,15 +217,13 @@ llama_kv_cache_unified_iswa_state::llama_kv_cache_unified_iswa_state( llama_sbatch sbatch, std::vector<uint32_t> heads_base, std::vector<uint32_t> heads_swa, - std::vector<llama_ubatch> ubatches) - : status(LLAMA_MEMORY_STATUS_SUCCESS), - sbatch(std::move(sbatch)), - ubatches(std::move(ubatches)) { + std::vector<llama_ubatch> ubatches) : + sbatch(std::move(sbatch)), + ubatches(std::move(ubatches)), // note: here we copy the ubatches. not sure if this is ideal - state_base.reset(new llama_kv_cache_unified_state(kv->get_base(), {}, std::move(heads_base), this->ubatches)); - state_swa .reset(new llama_kv_cache_unified_state(kv->get_swa (), {}, std::move(heads_swa), this->ubatches)); - - status = llama_memory_status_combine(state_base->get_status(), state_swa->get_status()); + state_base(new llama_kv_cache_unified_state(kv->get_base(), {}, std::move(heads_base), this->ubatches)), + state_swa (new llama_kv_cache_unified_state(kv->get_swa (), {}, std::move(heads_swa), this->ubatches)), + status(llama_memory_status_combine(state_base->get_status(), state_swa->get_status())) { } llama_kv_cache_unified_iswa_state:: ~llama_kv_cache_unified_iswa_state() = default; diff --git a/src/llama-kv-cache-unified-iswa.h b/src/llama-kv-cache-unified-iswa.h index 6e941e1a41b88..813eaf39b25b0 100644 --- a/src/llama-kv-cache-unified-iswa.h +++ b/src/llama-kv-cache-unified-iswa.h @@ -117,8 +117,6 @@ class llama_kv_cache_unified_iswa_state : public llama_memory_state_i { const llama_kv_cache_unified_state * get_swa() const; private: - llama_memory_status status; - //llama_kv_cache_unified_iswa * kv; llama_sbatch sbatch; @@ -128,6 +126,8 @@ class llama_kv_cache_unified_iswa_state : public llama_memory_state_i { std::vector<llama_ubatch> ubatches; - llama_memory_state_ptr state_base; - llama_memory_state_ptr state_swa; + const llama_memory_state_ptr state_base; + const llama_memory_state_ptr state_swa; + + const llama_memory_status status; }; diff --git a/src/llama-kv-cache-unified.cpp b/src/llama-kv-cache-unified.cpp index 3b37679859d39..d4412288925c3 100644 --- a/src/llama-kv-cache-unified.cpp +++ b/src/llama-kv-cache-unified.cpp @@ -68,8 +68,8 @@ llama_kv_cache_unified::llama_kv_cache_unified( continue; } - const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); - const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); + const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il); + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il); const char * dev_name = "CPU"; @@ -1430,7 +1430,7 @@ void llama_kv_cache_unified::state_write_data(llama_io_write_i & io, const std:: for (const auto & layer : layers) { const uint32_t il = layer.il; - const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); + const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il); // Write key type const int32_t k_type_i = (int32_t)layer.k->type; @@ -1452,7 +1452,7 @@ void llama_kv_cache_unified::state_write_data(llama_io_write_i & io, const std:: for (const auto & layer : layers) { const uint32_t il = layer.il; - const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il); // Write value type const int32_t v_type_i = (int32_t)layer.v->type; @@ -1476,7 +1476,7 @@ void llama_kv_cache_unified::state_write_data(llama_io_write_i & io, const std:: for (const auto & layer : layers) { const uint32_t il = layer.il; - const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il); // Write value type const int32_t v_type_i = (int32_t)layer.v->type; @@ -1621,7 +1621,7 @@ bool llama_kv_cache_unified::state_read_data(llama_io_read_i & io, uint32_t cell for (const auto & layer : layers) { const uint32_t il = layer.il; - const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); + const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il); // Read type of key int32_t k_type_i_ref; @@ -1651,7 +1651,7 @@ bool llama_kv_cache_unified::state_read_data(llama_io_read_i & io, uint32_t cell for (const auto & layer : layers) { const uint32_t il = layer.il; - const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il); // Read type of value int32_t v_type_i_ref; @@ -1681,7 +1681,7 @@ bool llama_kv_cache_unified::state_read_data(llama_io_read_i & io, uint32_t cell for (const auto & layer : layers) { const uint32_t il = layer.il; - const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il); // Read type of value int32_t v_type_i_ref; diff --git a/src/llama-memory-hybrid.cpp b/src/llama-memory-hybrid.cpp new file mode 100644 index 0000000000000..d4b260db4c8e7 --- /dev/null +++ b/src/llama-memory-hybrid.cpp @@ -0,0 +1,247 @@ +#include "llama-memory-hybrid.h" + +#include "llama-impl.h" +#include "llama-model.h" +#include "llama-context.h" + +// +// llama_memory_hybrid +// + +llama_memory_hybrid::llama_memory_hybrid( + const llama_model & model, + /* attn */ + ggml_type type_k, + ggml_type type_v, + bool v_trans, + uint32_t kv_size, + uint32_t n_pad, + uint32_t n_swa, + llama_swa_type swa_type, + /* recurrent */ + ggml_type type_r, + ggml_type type_s, + uint32_t rs_size, + /* common */ + uint32_t n_seq_max, + bool offload, + /* layer filters */ + layer_filter_cb && filter_attn, + layer_filter_cb && filter_recr) : + hparams(model.hparams), + mem_attn(new llama_kv_cache_unified( + model, + filter_attn == nullptr ? + [&](int32_t il) { return !model.hparams.is_recurrent(il); } + : filter_attn, + type_k, + type_v, + v_trans, + offload, + kv_size, + n_seq_max, + n_pad, + n_swa, + swa_type + )), + mem_recr(new llama_memory_recurrent( + model, + filter_recr == nullptr ? + [&](int32_t il) { return model.hparams.is_recurrent(il); } + : filter_recr, + type_r, + type_s, + offload, + rs_size, + n_seq_max + )) {} + +llama_memory_state_ptr llama_memory_hybrid::init_batch(const llama_batch & batch, uint32_t n_ubatch, bool embd_pooled) { + + // since this includes a recurrent cache, we cannot use split_simple + auto sbatch = llama_sbatch(batch, hparams.n_embd, false); + + // follow the recurrent pattern for creating the ubatch splits + std::vector<llama_ubatch> ubatches; + while (sbatch.n_tokens > 0) { + llama_ubatch ubatch; + + if (embd_pooled) { + // Pooled embeddings cannot be split across ubatches (yet) + ubatch = sbatch.split_seq(n_ubatch); + } else { + ubatch = sbatch.split_equal(n_ubatch); + } + + ubatches.push_back(ubatch); + } + + // prepare the recurrent batches first + if (!mem_recr->prepare(ubatches)) { + // TODO: will the recurrent cache be in an undefined state at this point? + LLAMA_LOG_ERROR("%s: failed to prepare recurrent ubatches\n", __func__); + return std::make_unique<llama_memory_hybrid_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE); + } + + // prepare the attention cache + auto heads_attn = mem_attn->prepare(ubatches); + if (heads_attn.empty()) { + LLAMA_LOG_ERROR("%s: failed to prepare attention ubatches\n", __func__); + return std::make_unique<llama_memory_hybrid_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE); + } + + return std::make_unique<llama_memory_hybrid_state>( + this, std::move(sbatch), std::move(heads_attn), std::move(ubatches)); +} + +llama_memory_state_ptr llama_memory_hybrid::init_full() { + return std::make_unique<llama_memory_hybrid_state>(this); +} + +llama_memory_state_ptr llama_memory_hybrid::init_update(llama_context * lctx, bool optimize) { + return std::make_unique<llama_memory_hybrid_state>(this, lctx, optimize); +} + +bool llama_memory_hybrid::get_can_shift() const { + // Shifting is trivially supported for recurrent + return mem_attn->get_can_shift(); +} + +void llama_memory_hybrid::clear(bool data) { + mem_attn->clear(data); + mem_recr->clear(data); +} + +bool llama_memory_hybrid::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) { + // Try removing from the recurrent cache first since it may fail. If it does + // fail, the cache will not have been mutated. + if (!mem_recr->seq_rm(seq_id, p0, p1)) { + return false; + } + return mem_attn->seq_rm(seq_id, p0, p1); +} + +void llama_memory_hybrid::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { + mem_attn->seq_cp(seq_id_src, seq_id_dst, p0, p1); + mem_recr->seq_cp(seq_id_src, seq_id_dst, p0, p1); +} + +void llama_memory_hybrid::seq_keep(llama_seq_id seq_id) { + mem_attn->seq_keep(seq_id); + mem_recr->seq_keep(seq_id); +} + +void llama_memory_hybrid::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) { + mem_attn->seq_add(seq_id, p0, p1, shift); + mem_recr->seq_add(seq_id, p0, p1, shift); +} + +void llama_memory_hybrid::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { + mem_attn->seq_div(seq_id, p0, p1, d); + mem_recr->seq_div(seq_id, p0, p1, d); +} + +llama_pos llama_memory_hybrid::seq_pos_min(llama_seq_id seq_id) const { + // the min of the total cache is the max of the two caches' min values + return std::max(mem_attn->seq_pos_min(seq_id), mem_recr->seq_pos_min(seq_id)); +} + +llama_pos llama_memory_hybrid::seq_pos_max(llama_seq_id seq_id) const { + // the max of the total cache is the min of the two caches' max values + return std::min(mem_attn->seq_pos_max(seq_id), mem_recr->seq_pos_max(seq_id)); +} + +void llama_memory_hybrid::state_write(llama_io_write_i & io, llama_seq_id seq_id) const { + mem_attn->state_write(io, seq_id); + mem_recr->state_write(io, seq_id); +} + +void llama_memory_hybrid::state_read(llama_io_read_i & io, llama_seq_id seq_id) { + mem_attn->state_read(io, seq_id); + mem_recr->state_read(io, seq_id); +} + +llama_kv_cache_unified * llama_memory_hybrid::get_mem_attn() const { + return mem_attn.get(); +} + +llama_memory_recurrent * llama_memory_hybrid::get_mem_recr() const { + return mem_recr.get(); +} + +llama_memory_hybrid_state::llama_memory_hybrid_state(llama_memory_status status) : status(status) {} + +llama_memory_hybrid_state::llama_memory_hybrid_state(llama_memory_hybrid * mem) : + state_attn(mem->get_mem_attn()->init_full()), + state_recr(mem->get_mem_recr()->init_full()), + status(llama_memory_status_combine(state_attn->get_status(), state_recr->get_status())) { +} + +llama_memory_hybrid_state::llama_memory_hybrid_state( + llama_memory_hybrid * mem, + llama_context * lctx, + bool optimize) : + state_attn(mem->get_mem_attn()->init_update(lctx, optimize)), + state_recr(mem->get_mem_recr()->init_update(lctx, optimize)), + status(llama_memory_status_combine(state_attn->get_status(), state_recr->get_status())) { +} + +llama_memory_hybrid_state::llama_memory_hybrid_state( + llama_memory_hybrid * mem, + llama_sbatch sbatch, + std::vector<uint32_t> heads_attn, + std::vector<llama_ubatch> ubatches) : + sbatch(std::move(sbatch)), + ubatches(std::move(ubatches)), + // note: here we copy the ubatches. not sure if this is ideal + state_attn(new llama_kv_cache_unified_state(mem->get_mem_attn(), {}, std::move(heads_attn), this->ubatches)), + state_recr(new llama_memory_recurrent_state(mem->get_mem_recr(), {}, this->ubatches)), + status(LLAMA_MEMORY_STATUS_SUCCESS) { +} + +bool llama_memory_hybrid_state::next() { + assert(status == LLAMA_MEMORY_STATUS_SUCCESS); + + state_attn->next(); + state_recr->next(); + + if (++i_next >= ubatches.size()) { + return false; + } + + return true; +} + +bool llama_memory_hybrid_state::apply() { + assert(status == LLAMA_MEMORY_STATUS_SUCCESS); + + bool res = true; + + res = res & state_attn->apply(); + res = res & state_recr->apply(); + + return res; +} + +std::vector<int64_t> & llama_memory_hybrid_state::out_ids() { + assert(status == LLAMA_MEMORY_STATUS_SUCCESS); + + return sbatch.out_ids; +} + +llama_memory_status llama_memory_hybrid_state::get_status() const { + return status; +} + +const llama_ubatch & llama_memory_hybrid_state::get_ubatch() const { + assert(status == LLAMA_MEMORY_STATUS_SUCCESS); + return ubatches[i_next]; +} + +const llama_kv_cache_unified_state * llama_memory_hybrid_state::get_state_attn() const { + return static_cast<const llama_kv_cache_unified_state *>(state_attn.get()); +} + +const llama_memory_recurrent_state * llama_memory_hybrid_state::get_state_recr() const { + return static_cast<const llama_memory_recurrent_state *>(state_recr.get()); +} diff --git a/src/llama-memory-hybrid.h b/src/llama-memory-hybrid.h new file mode 100644 index 0000000000000..b5700c5225f18 --- /dev/null +++ b/src/llama-memory-hybrid.h @@ -0,0 +1,143 @@ +#pragma once + +#include "llama-batch.h" +#include "llama-graph.h" +#include "llama-kv-cache-unified.h" +#include "llama-memory.h" +#include "llama-memory-recurrent.h" + +#include <memory> +#include <vector> + +// +// llama_memory_hybrid +// + +// utilizes instances of llama_memory_recurrent and llama_kv_cache_unified to +// support models where each layer may be either attention-based or recurrent + +class llama_memory_hybrid : public llama_memory_i { +public: + + // this callback is used to filter out layers that should not be included in the cache + using layer_filter_cb = std::function<bool(int32_t il)>; + + llama_memory_hybrid( + const llama_model & model, + /* attn */ + ggml_type type_k, + ggml_type type_v, + bool v_trans, + uint32_t kv_size, + uint32_t n_pad, + uint32_t n_swa, + llama_swa_type swa_type, + /* recurrent */ + ggml_type type_r, + ggml_type type_s, + uint32_t rs_size, + /* common */ + uint32_t n_seq_max, + bool offload, + /* layer filters */ + layer_filter_cb && filter_attn = nullptr, + layer_filter_cb && filter_recr = nullptr); + + ~llama_memory_hybrid() = default; + + // + // llama_memory_i + // + + llama_memory_state_ptr init_batch( + const llama_batch & batch, + uint32_t n_ubatch, + bool embd_pooled) override; + + llama_memory_state_ptr init_full() override; + + llama_memory_state_ptr init_update(llama_context * lctx, bool optimize) override; + + bool get_can_shift() const override; + + void clear(bool data) override; + + bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override; + void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override; + void seq_keep(llama_seq_id seq_id) override; + void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) override; + void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override; + + llama_pos seq_pos_min(llama_seq_id seq_id) const override; + llama_pos seq_pos_max(llama_seq_id seq_id) const override; + + // state write/load + + void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override; + void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override; + + // + // llama_memory_hybrid specific API + // + + llama_kv_cache_unified * get_mem_attn() const; + llama_memory_recurrent * get_mem_recr() const; + +private: + const llama_hparams & hparams; + + const std::unique_ptr<llama_kv_cache_unified> mem_attn; + const std::unique_ptr<llama_memory_recurrent> mem_recr; +}; + +class llama_memory_hybrid_state : public llama_memory_state_i { +public: + // init failure + explicit llama_memory_hybrid_state(llama_memory_status status); + + // init full + explicit llama_memory_hybrid_state(llama_memory_hybrid * mem); + + // init update + explicit llama_memory_hybrid_state( + llama_memory_hybrid * mem, + llama_context * lctx, + bool optimize); + + // init success + llama_memory_hybrid_state( + llama_memory_hybrid * mem, + llama_sbatch sbatch, + std::vector<uint32_t> heads_attn, + std::vector<llama_ubatch> ubatches); + + ~llama_memory_hybrid_state() = default; + + bool next() override; + bool apply() override; + + std::vector<int64_t> & out_ids() override; + + llama_memory_status get_status() const override; + const llama_ubatch & get_ubatch() const override; + + // + // llama_memory_hybrid_state + // + + const llama_kv_cache_unified_state * get_state_attn() const; + const llama_memory_recurrent_state * get_state_recr() const; + +private: + llama_sbatch sbatch; + + // the index of the next ubatch to process + size_t i_next = 0; + + std::vector<llama_ubatch> ubatches; + + const llama_memory_state_ptr state_attn; + const llama_memory_state_ptr state_recr; + + const llama_memory_status status; +}; diff --git a/src/llama-kv-cache-recurrent.cpp b/src/llama-memory-recurrent.cpp similarity index 67% rename from src/llama-kv-cache-recurrent.cpp rename to src/llama-memory-recurrent.cpp index 8f6f120f682b7..c4f9a6f1ddc98 100644 --- a/src/llama-kv-cache-recurrent.cpp +++ b/src/llama-memory-recurrent.cpp @@ -1,4 +1,4 @@ -#include "llama-kv-cache-recurrent.h" +#include "llama-memory-recurrent.h" #include "llama-impl.h" #include "llama-io.h" @@ -12,27 +12,28 @@ #include <stdexcept> // -// llama_kv_cache_recurrent +// llama_memory_recurrent // -llama_kv_cache_recurrent::llama_kv_cache_recurrent( - const llama_model & model, - ggml_type type_k, - ggml_type type_v, - bool offload, - uint32_t kv_size, - uint32_t n_seq_max) : hparams(model.hparams), n_seq_max(n_seq_max) { +llama_memory_recurrent::llama_memory_recurrent( + const llama_model & model, + layer_filter_cb && filter, + ggml_type type_r, + ggml_type type_s, + bool offload, + uint32_t mem_size, + uint32_t n_seq_max) : hparams(model.hparams), n_seq_max(n_seq_max) { const int32_t n_layer = hparams.n_layer; - LLAMA_LOG_INFO("%s: kv_size = %u, n_seq_max = %u, type_k = '%s', type_v = '%s', n_layer = %d\n", - __func__, kv_size, n_seq_max, ggml_type_name(type_k), ggml_type_name(type_v), n_layer); + LLAMA_LOG_INFO("%s: mem_size = %u, n_seq_max = %u, type_r = '%s', type_s = '%s', n_layer = %d\n", + __func__, mem_size, n_seq_max, ggml_type_name(type_r), ggml_type_name(type_s), n_layer); head = 0; - size = kv_size; + size = mem_size; used = 0; cells.clear(); - cells.resize(kv_size); + cells.resize(mem_size); // create a context for each buffer type std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map; @@ -59,12 +60,14 @@ llama_kv_cache_recurrent::llama_kv_cache_recurrent( return it->second; }; - k_l.reserve(n_layer); - v_l.reserve(n_layer); + r_l.resize(n_layer); + s_l.resize(n_layer); for (int i = 0; i < n_layer; i++) { - const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s(); - const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s(); + if (filter && !filter(i)) { + LLAMA_LOG_DEBUG("%s: layer %3d: skipped\n", __func__, i); + continue; + } const char * dev_name = "CPU"; @@ -84,12 +87,12 @@ llama_kv_cache_recurrent::llama_kv_cache_recurrent( throw std::runtime_error("failed to create ggml context for kv cache"); } - ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size); - ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size); - ggml_format_name(k, "cache_k_l%d", i); - ggml_format_name(v, "cache_v_l%d", i); - k_l.push_back(k); - v_l.push_back(v); + ggml_tensor * r = ggml_new_tensor_1d(ctx, type_r, hparams.n_embd_r()*mem_size); + ggml_tensor * s = ggml_new_tensor_1d(ctx, type_s, hparams.n_embd_s()*mem_size); + ggml_format_name(r, "cache_r_l%d", i); + ggml_format_name(s, "cache_s_l%d", i); + r_l[i] = r; + s_l[i] = s; } // allocate tensors and initialize the buffers to avoid NaNs in the padding @@ -107,17 +110,17 @@ llama_kv_cache_recurrent::llama_kv_cache_recurrent( } { - const size_t memory_size_k = size_k_bytes(); - const size_t memory_size_v = size_v_bytes(); + const size_t memory_size_r = size_r_bytes(); + const size_t memory_size_s = size_s_bytes(); - LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__, - (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f), - ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f), - ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f)); + LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, R (%s): %7.2f MiB, S (%s): %7.2f MiB\n", __func__, + (float)(memory_size_r + memory_size_s) / (1024.0f * 1024.0f), + ggml_type_name(type_r), (float)memory_size_r / (1024.0f * 1024.0f), + ggml_type_name(type_s), (float)memory_size_s / (1024.0f * 1024.0f)); } } -void llama_kv_cache_recurrent::clear(bool data) { +void llama_memory_recurrent::clear(bool data) { for (int32_t i = 0; i < (int32_t) size; ++i) { cells[i].pos = -1; cells[i].seq_id.clear(); @@ -135,7 +138,7 @@ void llama_kv_cache_recurrent::clear(bool data) { } } -bool llama_kv_cache_recurrent::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) { +bool llama_memory_recurrent::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) { uint32_t new_head = size; if (p0 < 0) { @@ -154,7 +157,7 @@ bool llama_kv_cache_recurrent::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_p if (0 <= seq_id) { int32_t & tail_id = cells[seq_id].tail; if (tail_id >= 0) { - const kv_cell & cell = cells[tail_id]; + const auto & cell = cells[tail_id]; // partial intersection is invalid if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) { return false; @@ -202,7 +205,7 @@ bool llama_kv_cache_recurrent::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_p return true; } -void llama_kv_cache_recurrent::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { +void llama_memory_recurrent::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { if (seq_id_src == seq_id_dst) { return; } @@ -216,11 +219,11 @@ void llama_kv_cache_recurrent::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_ } if ((uint32_t) seq_id_dst < size && (uint32_t) seq_id_src < size) { - kv_cell & tail_src = cells[seq_id_src]; - kv_cell & tail_dst = cells[seq_id_dst]; + auto & tail_src = cells[seq_id_src]; + auto & tail_dst = cells[seq_id_dst]; if (tail_dst.tail >= 0) { // clear destination seq_id if it wasn't empty - kv_cell & cell_dst = cells[tail_dst.tail]; + auto & cell_dst = cells[tail_dst.tail]; cell_dst.seq_id.erase(seq_id_dst); tail_dst.tail = -1; @@ -231,7 +234,7 @@ void llama_kv_cache_recurrent::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_ } } if (tail_src.tail >= 0) { - kv_cell & cell_src = cells[tail_src.tail]; + auto & cell_src = cells[tail_src.tail]; cell_src.seq_id.insert(seq_id_dst); tail_dst.tail = tail_src.tail; @@ -239,7 +242,7 @@ void llama_kv_cache_recurrent::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_ } } -void llama_kv_cache_recurrent::seq_keep(llama_seq_id seq_id) { +void llama_memory_recurrent::seq_keep(llama_seq_id seq_id) { uint32_t new_head = size; for (uint32_t i = 0; i < size; ++i) { @@ -271,7 +274,7 @@ void llama_kv_cache_recurrent::seq_keep(llama_seq_id seq_id) { } } -void llama_kv_cache_recurrent::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) { +void llama_memory_recurrent::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) { if (shift == 0) { return; } @@ -293,7 +296,7 @@ void llama_kv_cache_recurrent::seq_add(llama_seq_id seq_id, llama_pos p0, llama_ if (0 <= seq_id && seq_id < (int64_t) size) { const int32_t tail_id = cells[seq_id].tail; if (tail_id >= 0) { - kv_cell & cell = cells[tail_id]; + auto & cell = cells[tail_id]; if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) { cell.pos += shift; } @@ -301,7 +304,7 @@ void llama_kv_cache_recurrent::seq_add(llama_seq_id seq_id, llama_pos p0, llama_ } } -void llama_kv_cache_recurrent::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { +void llama_memory_recurrent::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { if (d == 1) { return; } @@ -323,7 +326,7 @@ void llama_kv_cache_recurrent::seq_div(llama_seq_id seq_id, llama_pos p0, llama_ if (0 <= seq_id && seq_id < (int64_t) size) { const int32_t tail_id = cells[seq_id].tail; if (tail_id >= 0) { - kv_cell & cell = cells[tail_id]; + auto & cell = cells[tail_id]; if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) { cell.pos /= d; } @@ -331,7 +334,7 @@ void llama_kv_cache_recurrent::seq_div(llama_seq_id seq_id, llama_pos p0, llama_ } } -llama_pos llama_kv_cache_recurrent::seq_pos_min(llama_seq_id seq_id) const { +llama_pos llama_memory_recurrent::seq_pos_min(llama_seq_id seq_id) const { llama_pos result = std::numeric_limits<llama_pos>::max(); for (uint32_t i = 0; i < size; ++i) { @@ -347,7 +350,7 @@ llama_pos llama_kv_cache_recurrent::seq_pos_min(llama_seq_id seq_id) const { return result; } -llama_pos llama_kv_cache_recurrent::seq_pos_max(llama_seq_id seq_id) const { +llama_pos llama_memory_recurrent::seq_pos_max(llama_seq_id seq_id) const { llama_pos result = -1; for (uint32_t i = 0; i < size; ++i) { @@ -359,7 +362,7 @@ llama_pos llama_kv_cache_recurrent::seq_pos_max(llama_seq_id seq_id) const { return result; } -llama_memory_state_ptr llama_kv_cache_recurrent::init_batch(const llama_batch & batch, uint32_t n_ubatch, bool embd_all) { +llama_memory_state_ptr llama_memory_recurrent::init_batch(const llama_batch & batch, uint32_t n_ubatch, bool embd_all) { auto sbatch = llama_sbatch(batch, hparams.n_embd, false); std::vector<llama_ubatch> ubatches; @@ -378,24 +381,24 @@ llama_memory_state_ptr llama_kv_cache_recurrent::init_batch(const llama_batch & } if (!prepare(ubatches)) { - return std::make_unique<llama_kv_cache_recurrent_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE); + return std::make_unique<llama_memory_recurrent_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE); } - return std::make_unique<llama_kv_cache_recurrent_state>(LLAMA_MEMORY_STATUS_SUCCESS, this, std::move(sbatch), std::move(ubatches)); + return std::make_unique<llama_memory_recurrent_state>(this, std::move(sbatch), std::move(ubatches)); } -llama_memory_state_ptr llama_kv_cache_recurrent::init_full() { - return std::make_unique<llama_kv_cache_recurrent_state>(LLAMA_MEMORY_STATUS_SUCCESS, this); +llama_memory_state_ptr llama_memory_recurrent::init_full() { + return std::make_unique<llama_memory_recurrent_state>(this); } -llama_memory_state_ptr llama_kv_cache_recurrent::init_update(llama_context * lctx, bool optimize) { +llama_memory_state_ptr llama_memory_recurrent::init_update(llama_context * lctx, bool optimize) { GGML_UNUSED(lctx); GGML_UNUSED(optimize); - return std::make_unique<llama_kv_cache_recurrent_state>(LLAMA_MEMORY_STATUS_NO_UPDATE); + return std::make_unique<llama_memory_recurrent_state>(LLAMA_MEMORY_STATUS_NO_UPDATE); } -bool llama_kv_cache_recurrent::prepare(const std::vector<llama_ubatch> & ubatches) { +bool llama_memory_recurrent::prepare(const std::vector<llama_ubatch> & ubatches) { // simply remember the full state because it is very small for this type of cache // TODO: optimize auto org_cells = cells; @@ -419,7 +422,7 @@ bool llama_kv_cache_recurrent::prepare(const std::vector<llama_ubatch> & ubatche return success; } -bool llama_kv_cache_recurrent::find_slot(const llama_ubatch & ubatch) { +bool llama_memory_recurrent::find_slot(const llama_ubatch & ubatch) { const uint32_t n_seqs = ubatch.n_seqs; const uint32_t n_seq_tokens = ubatch.n_seq_tokens; @@ -453,9 +456,9 @@ bool llama_kv_cache_recurrent::find_slot(const llama_ubatch & ubatch) { return false; } if (j > 0) { - kv_cell & seq = cells[seq_id]; + auto & seq = cells[seq_id]; if (seq.tail >= 0) { - kv_cell & cell = cells[seq.tail]; + auto & cell = cells[seq.tail]; // clear cells from seq_ids that become shared // (should not normally happen, but let's handle it anyway) cell.seq_id.erase(seq_id); @@ -475,7 +478,7 @@ bool llama_kv_cache_recurrent::find_slot(const llama_ubatch & ubatch) { std::vector<int32_t> tails_verif; tails_verif.assign(size, -1); for (uint32_t i = 0; i < size; ++i) { - kv_cell & cell = cells[i]; + auto & cell = cells[i]; for (llama_seq_id seq_id : cell.seq_id) { if (tails_verif[seq_id] != -1) { LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]); @@ -496,7 +499,7 @@ bool llama_kv_cache_recurrent::find_slot(const llama_ubatch & ubatch) { for (uint32_t i = 0; i < size; ++i) { if (next_empty_cell >= size) { next_empty_cell -= size; } - kv_cell & cell = cells[next_empty_cell]; + auto & cell = cells[next_empty_cell]; if (cell.is_empty()) { break; } next_empty_cell += 1; } @@ -504,20 +507,20 @@ bool llama_kv_cache_recurrent::find_slot(const llama_ubatch & ubatch) { // find usable cell range for (uint32_t s = 0; s < n_seqs; ++s) { const llama_seq_id seq_id = ubatch.seq_id[s][0]; - kv_cell & seq_meta = cells[seq_id]; + auto & seq_meta = cells[seq_id]; bool has_cell = false; if (seq_meta.tail >= 0) { - kv_cell & cell = cells[seq_meta.tail]; + auto & cell = cells[seq_meta.tail]; GGML_ASSERT(cell.has_seq_id(seq_id)); // does this seq_id "own" the cell? if (cell.seq_id.size() == 1) { has_cell = true; } } if (!has_cell) { - kv_cell & empty_cell = cells[next_empty_cell]; + auto & empty_cell = cells[next_empty_cell]; GGML_ASSERT(empty_cell.is_empty()); // copy old tail into the empty cell if (seq_meta.tail >= 0) { - kv_cell & orig_cell = cells[seq_meta.tail]; + auto & orig_cell = cells[seq_meta.tail]; empty_cell.pos = orig_cell.pos; empty_cell.src = orig_cell.src; orig_cell.seq_id.erase(seq_id); @@ -530,7 +533,7 @@ bool llama_kv_cache_recurrent::find_slot(const llama_ubatch & ubatch) { for (uint32_t i = 0; i < size; ++i) { next_empty_cell += 1; if (next_empty_cell >= size) { next_empty_cell -= size; } - kv_cell & cell = cells[next_empty_cell]; + auto & cell = cells[next_empty_cell]; if (cell.is_empty()) { break; } } } @@ -544,8 +547,8 @@ bool llama_kv_cache_recurrent::find_slot(const llama_ubatch & ubatch) { const int32_t dst_id = s + min; const int32_t src_id = cells[ubatch.seq_id[s][0]].tail; if (dst_id != src_id) { - kv_cell & dst_cell = cells[dst_id]; - kv_cell & src_cell = cells[src_id]; + auto & dst_cell = cells[dst_id]; + auto & src_cell = cells[src_id]; std::swap(dst_cell.pos, src_cell.pos); std::swap(dst_cell.src, src_cell.src); @@ -567,7 +570,7 @@ bool llama_kv_cache_recurrent::find_slot(const llama_ubatch & ubatch) { for (uint32_t s = 0; s < n_seqs; ++s) { const llama_pos last_pos = ubatch.pos[n_seq_tokens * s + n_seq_tokens - 1]; const int32_t cell_id = s + min; - kv_cell & cell = cells[cell_id]; + auto & cell = cells[cell_id]; if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) { // What should happen when the pos backtracks or skips a value? @@ -620,18 +623,18 @@ bool llama_kv_cache_recurrent::find_slot(const llama_ubatch & ubatch) { head = min; n = max - min + 1; used = std::count_if(cells.begin(), cells.end(), - [](const kv_cell & cell){ return !cell.is_empty(); }); + [](const mem_cell & cell){ return !cell.is_empty(); }); // sanity check return n >= n_seqs; } -bool llama_kv_cache_recurrent::get_can_shift() const { +bool llama_memory_recurrent::get_can_shift() const { // shifting the pos is trivial for recurrent models return true; } -size_t llama_kv_cache_recurrent::total_size() const { +size_t llama_memory_recurrent::total_size() const { size_t size = 0; for (const auto & buf : bufs) { size += ggml_backend_buffer_get_size(buf.get()); @@ -640,27 +643,31 @@ size_t llama_kv_cache_recurrent::total_size() const { return size; } -size_t llama_kv_cache_recurrent::size_k_bytes() const { - size_t size_k_bytes = 0; +size_t llama_memory_recurrent::size_r_bytes() const { + size_t size_r_bytes = 0; - for (const auto & k : k_l) { - size_k_bytes += ggml_nbytes(k); + for (const auto & r : r_l) { + if (r != nullptr) { + size_r_bytes += ggml_nbytes(r); + } } - return size_k_bytes; + return size_r_bytes; } -size_t llama_kv_cache_recurrent::size_v_bytes() const { - size_t size_v_bytes = 0; +size_t llama_memory_recurrent::size_s_bytes() const { + size_t size_s_bytes = 0; - for (const auto & v : v_l) { - size_v_bytes += ggml_nbytes(v); + for (const auto & s : s_l) { + if (s != nullptr) { + size_s_bytes += ggml_nbytes(s); + } } - return size_v_bytes; + return size_s_bytes; } -void llama_kv_cache_recurrent::state_write(llama_io_write_i & io, llama_seq_id seq_id) const { +void llama_memory_recurrent::state_write(llama_io_write_i & io, llama_seq_id seq_id) const { std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive uint32_t cell_count = 0; @@ -698,7 +705,7 @@ void llama_kv_cache_recurrent::state_write(llama_io_write_i & io, llama_seq_id s state_write_data(io, cell_ranges); } -void llama_kv_cache_recurrent::state_read(llama_io_read_i & io, llama_seq_id seq_id) { +void llama_memory_recurrent::state_read(llama_io_read_i & io, llama_seq_id seq_id) { uint32_t cell_count; io.read_to(&cell_count, sizeof(cell_count)); @@ -717,7 +724,7 @@ void llama_kv_cache_recurrent::state_read(llama_io_read_i & io, llama_seq_id seq } } -void llama_kv_cache_recurrent::state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id) const { +void llama_memory_recurrent::state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id) const { for (const auto & range : cell_ranges) { for (uint32_t i = range.first; i < range.second; ++i) { const auto & cell = cells[i]; @@ -736,87 +743,85 @@ void llama_kv_cache_recurrent::state_write_meta(llama_io_write_i & io, const std } } -void llama_kv_cache_recurrent::state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const { - const uint32_t v_trans = 0; +void llama_memory_recurrent::state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const { + const uint32_t s_trans = 0; const uint32_t n_layer = hparams.n_layer; - io.write(&v_trans, sizeof(v_trans)); - io.write(&n_layer, sizeof(n_layer)); + io.write(&s_trans, sizeof(s_trans)); + io.write(&n_layer, sizeof(n_layer)); std::vector<uint8_t> tmp_buf; // Iterate and write all the keys first, each row is a cell // Get whole range at a time for (uint32_t il = 0; il < n_layer; ++il) { - const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); // Write key type - const int32_t k_type_i = (int32_t)k_l[il]->type; - io.write(&k_type_i, sizeof(k_type_i)); + const int32_t r_type_i = (int32_t)r_l[il]->type; + io.write(&r_type_i, sizeof(r_type_i)); // Write row size of key - const uint64_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa); - io.write(&k_size_row, sizeof(k_size_row)); + const uint64_t r_size_row = ggml_row_size(r_l[il]->type, hparams.n_embd_r()); + io.write(&r_size_row, sizeof(r_size_row)); // Read each range of cells of k_size length each into tmp_buf and write out for (const auto & range : cell_ranges) { const size_t range_size = range.second - range.first; - const size_t buf_size = range_size * k_size_row; - io.write_tensor(k_l[il], range.first * k_size_row, buf_size); + const size_t buf_size = range_size * r_size_row; + io.write_tensor(r_l[il], range.first * r_size_row, buf_size); } } - if (!v_trans) { + if (!s_trans) { for (uint32_t il = 0; il < n_layer; ++il) { - const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); // Write value type - const int32_t v_type_i = (int32_t)v_l[il]->type; - io.write(&v_type_i, sizeof(v_type_i)); + const int32_t s_type_i = (int32_t)s_l[il]->type; + io.write(&s_type_i, sizeof(s_type_i)); // Write row size of value - const uint64_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa); - io.write(&v_size_row, sizeof(v_size_row)); + const uint64_t s_size_row = ggml_row_size(s_l[il]->type, hparams.n_embd_s()); + io.write(&s_size_row, sizeof(s_size_row)); - // Read each range of cells of v_size length each into tmp_buf and write out + // Read each range of cells of s_size length each into tmp_buf and write out for (const auto & range : cell_ranges) { const size_t range_size = range.second - range.first; - const size_t buf_size = range_size * v_size_row; - io.write_tensor(v_l[il], range.first * v_size_row, buf_size); + const size_t buf_size = range_size * s_size_row; + io.write_tensor(s_l[il], range.first * s_size_row, buf_size); } } } else { // When v is transposed, we also need the element size and get the element ranges from each row - const uint32_t kv_size = size; + const uint32_t mem_size = size; for (uint32_t il = 0; il < n_layer; ++il) { - const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); + const uint32_t n_embd_s = hparams.n_embd_s(); // Write value type - const int32_t v_type_i = (int32_t)v_l[il]->type; - io.write(&v_type_i, sizeof(v_type_i)); + const int32_t s_type_i = (int32_t)s_l[il]->type; + io.write(&s_type_i, sizeof(s_type_i)); // Write element size - const uint32_t v_size_el = ggml_type_size(v_l[il]->type); - io.write(&v_size_el, sizeof(v_size_el)); + const uint32_t s_size_el = ggml_type_size(s_l[il]->type); + io.write(&s_size_el, sizeof(s_size_el)); // Write GQA embedding size - io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa)); + io.write(&n_embd_s, sizeof(n_embd_s)); // For each row, we get the element values of each cell - for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { + for (uint32_t j = 0; j < n_embd_s; ++j) { // Read each range of cells of v_size_el length each into tmp_buf and write out for (const auto & range : cell_ranges) { const size_t range_size = range.second - range.first; - const size_t src_offset = (range.first + j * kv_size) * v_size_el; - const size_t buf_size = range_size * v_size_el; - io.write_tensor(v_l[il], src_offset, buf_size); + const size_t src_offset = (range.first + j * mem_size) * s_size_el; + const size_t buf_size = range_size * s_size_el; + io.write_tensor(s_l[il], src_offset, buf_size); } } } } } -bool llama_kv_cache_recurrent::state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id) { +bool llama_memory_recurrent::state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id) { if (dest_seq_id != -1) { // single sequence @@ -869,7 +874,7 @@ bool llama_kv_cache_recurrent::state_read_meta(llama_io_read_i & io, uint32_t ce clear(true); for (uint32_t i = 0; i < cell_count; ++i) { - kv_cell & cell = cells[i]; + auto & cell = cells[i]; llama_pos pos; uint32_t n_seq_id; @@ -883,7 +888,7 @@ bool llama_kv_cache_recurrent::state_read_meta(llama_io_read_i & io, uint32_t ce llama_seq_id seq_id; io.read_to(&seq_id, sizeof(seq_id)); - // TODO: llama_kv_cache_recurrent should have a notion of max sequences + // TODO: llama_memory_recurrent should have a notion of max sequences //if (seq_id < 0 || (uint32_t) seq_id >= llama_n_seq_max(ctx)) { if (seq_id < 0) { //LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, llama_n_seq_max(ctx)); @@ -915,10 +920,10 @@ bool llama_kv_cache_recurrent::state_read_meta(llama_io_read_i & io, uint32_t ce return true; } -bool llama_kv_cache_recurrent::state_read_data(llama_io_read_i & io, uint32_t cell_count) { - uint32_t v_trans; +bool llama_memory_recurrent::state_read_data(llama_io_read_i & io, uint32_t cell_count) { + uint32_t s_trans; uint32_t n_layer; - io.read_to(&v_trans, sizeof(v_trans)); + io.read_to(&s_trans, sizeof(s_trans)); io.read_to(&n_layer, sizeof(n_layer)); if (n_layer != hparams.n_layer) { @@ -929,102 +934,100 @@ bool llama_kv_cache_recurrent::state_read_data(llama_io_read_i & io, uint32_t ce LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, size); return false; } - if (false != (bool) v_trans) { - LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__); + if (false != (bool) s_trans) { + LLAMA_LOG_ERROR("%s: incompatible s transposition\n", __func__); return false; } // For each layer, read the keys for each cell, one row is one cell, read as one contiguous block for (uint32_t il = 0; il < n_layer; ++il) { - const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); // Read type of key - int32_t k_type_i_ref; - io.read_to(&k_type_i_ref, sizeof(k_type_i_ref)); - const int32_t k_type_i = (int32_t) k_l[il]->type; - if (k_type_i != k_type_i_ref) { - LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il); + int32_t r_type_i_ref; + io.read_to(&r_type_i_ref, sizeof(r_type_i_ref)); + const int32_t r_type_i = (int32_t) r_l[il]->type; + if (r_type_i != r_type_i_ref) { + LLAMA_LOG_ERROR("%s: mismatched r type (%d != %d, layer %d)\n", __func__, r_type_i, r_type_i_ref, il); return false; } // Read row size of key - uint64_t k_size_row_ref; - io.read_to(&k_size_row_ref, sizeof(k_size_row_ref)); - const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa); - if (k_size_row != k_size_row_ref) { - LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il); + uint64_t r_size_row_ref; + io.read_to(&r_size_row_ref, sizeof(r_size_row_ref)); + const size_t r_size_row = ggml_row_size(r_l[il]->type, hparams.n_embd_r()); + if (r_size_row != r_size_row_ref) { + LLAMA_LOG_ERROR("%s: mismatched r row size (%zu != %zu, layer %d)\n", __func__, r_size_row, (size_t) r_size_row_ref, il); return false; } if (cell_count) { // Read and set the keys for the whole cell range - ggml_backend_tensor_set(k_l[il], io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row); + ggml_backend_tensor_set(r_l[il], io.read(cell_count * r_size_row), head * r_size_row, cell_count * r_size_row); } } - if (!v_trans) { + if (!s_trans) { for (uint32_t il = 0; il < n_layer; ++il) { - const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); // Read type of value - int32_t v_type_i_ref; - io.read_to(&v_type_i_ref, sizeof(v_type_i_ref)); - const int32_t v_type_i = (int32_t)v_l[il]->type; - if (v_type_i != v_type_i_ref) { - LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); + int32_t s_type_i_ref; + io.read_to(&s_type_i_ref, sizeof(s_type_i_ref)); + const int32_t s_type_i = (int32_t)s_l[il]->type; + if (s_type_i != s_type_i_ref) { + LLAMA_LOG_ERROR("%s: mismatched s type (%d != %d, layer %d)\n", __func__, s_type_i, s_type_i_ref, il); return false; } // Read row size of value - uint64_t v_size_row_ref; - io.read_to(&v_size_row_ref, sizeof(v_size_row_ref)); - const size_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa); - if (v_size_row != v_size_row_ref) { - LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il); + uint64_t s_size_row_ref; + io.read_to(&s_size_row_ref, sizeof(s_size_row_ref)); + const size_t s_size_row = ggml_row_size(s_l[il]->type, hparams.n_embd_s()); + if (s_size_row != s_size_row_ref) { + LLAMA_LOG_ERROR("%s: mismatched s row size (%zu != %zu, layer %d)\n", __func__, s_size_row, (size_t) s_size_row_ref, il); return false; } if (cell_count) { // Read and set the values for the whole cell range - ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row); + ggml_backend_tensor_set(s_l[il], io.read(cell_count * s_size_row), head * s_size_row, cell_count * s_size_row); } } } else { // For each layer, read the values for each cell (transposed) for (uint32_t il = 0; il < n_layer; ++il) { - const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); + const uint32_t n_embd_s = hparams.n_embd_s(); // Read type of value - int32_t v_type_i_ref; - io.read_to(&v_type_i_ref, sizeof(v_type_i_ref)); - const int32_t v_type_i = (int32_t)v_l[il]->type; - if (v_type_i != v_type_i_ref) { - LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); + int32_t s_type_i_ref; + io.read_to(&s_type_i_ref, sizeof(s_type_i_ref)); + const int32_t s_type_i = (int32_t)s_l[il]->type; + if (s_type_i != s_type_i_ref) { + LLAMA_LOG_ERROR("%s: mismatched s type (%d != %d, layer %d)\n", __func__, s_type_i, s_type_i_ref, il); return false; } // Read element size of value - uint32_t v_size_el_ref; - io.read_to(&v_size_el_ref, sizeof(v_size_el_ref)); - const size_t v_size_el = ggml_type_size(v_l[il]->type); - if (v_size_el != v_size_el_ref) { - LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il); + uint32_t s_size_el_ref; + io.read_to(&s_size_el_ref, sizeof(s_size_el_ref)); + const size_t s_size_el = ggml_type_size(s_l[il]->type); + if (s_size_el != s_size_el_ref) { + LLAMA_LOG_ERROR("%s: mismatched s element size (%zu != %zu, layer %d)\n", __func__, s_size_el, (size_t) s_size_el_ref, il); return false; } - // Read GQA embedding size - uint32_t n_embd_v_gqa_ref; - io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref)); - if (n_embd_v_gqa != n_embd_v_gqa_ref) { - LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il); + // Read state embedding size + uint32_t n_embd_s_ref; + io.read_to(&n_embd_s_ref, sizeof(n_embd_s_ref)); + if (n_embd_s != n_embd_s_ref) { + LLAMA_LOG_ERROR("%s: mismatched s embedding size (%u != %u, layer %d)\n", __func__, n_embd_s, n_embd_s_ref, il); return false; } if (cell_count) { // For each row in the transposed matrix, read the values for the whole cell range - for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { - const size_t dst_offset = (head + j * size) * v_size_el; - ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el); + for (uint32_t j = 0; j < n_embd_s; ++j) { + const size_t dst_offset = (head + j * size) * s_size_el; + ggml_backend_tensor_set(s_l[il], io.read(cell_count * s_size_el), dst_offset, cell_count * s_size_el); } } } @@ -1034,25 +1037,23 @@ bool llama_kv_cache_recurrent::state_read_data(llama_io_read_i & io, uint32_t ce } // -// llama_kv_cache_recurrent_state +// llama_memory_recurrent_state // -llama_kv_cache_recurrent_state::llama_kv_cache_recurrent_state(llama_memory_status status) : status(status) {} +llama_memory_recurrent_state::llama_memory_recurrent_state(llama_memory_status status) : status(status) {} -llama_kv_cache_recurrent_state::llama_kv_cache_recurrent_state( - llama_memory_status status, - llama_kv_cache_recurrent * kv) : status(status), kv(kv), is_full(true) { +llama_memory_recurrent_state::llama_memory_recurrent_state( + llama_memory_recurrent * mem) : status(LLAMA_MEMORY_STATUS_SUCCESS), mem(mem), is_full(true) { } -llama_kv_cache_recurrent_state::llama_kv_cache_recurrent_state( - llama_memory_status status, - llama_kv_cache_recurrent * kv, +llama_memory_recurrent_state::llama_memory_recurrent_state( + llama_memory_recurrent * mem, llama_sbatch sbatch, - std::vector<llama_ubatch> ubatches) : status(status), kv(kv), sbatch(std::move(sbatch)), ubatches(std::move(ubatches)) {} + std::vector<llama_ubatch> ubatches) : status(LLAMA_MEMORY_STATUS_SUCCESS), mem(mem), sbatch(std::move(sbatch)), ubatches(std::move(ubatches)) {} -llama_kv_cache_recurrent_state::~llama_kv_cache_recurrent_state() = default; +llama_memory_recurrent_state::~llama_memory_recurrent_state() = default; -bool llama_kv_cache_recurrent_state::next() { +bool llama_memory_recurrent_state::next() { assert(status == LLAMA_MEMORY_STATUS_SUCCESS); if (++i_next >= ubatches.size()) { @@ -1062,54 +1063,54 @@ bool llama_kv_cache_recurrent_state::next() { return true; } -bool llama_kv_cache_recurrent_state::apply() { +bool llama_memory_recurrent_state::apply() { assert(status == LLAMA_MEMORY_STATUS_SUCCESS); - kv->find_slot(ubatches[i_next]); + mem->find_slot(ubatches[i_next]); return true; } -std::vector<int64_t> & llama_kv_cache_recurrent_state::out_ids() { +std::vector<int64_t> & llama_memory_recurrent_state::out_ids() { assert(status == LLAMA_MEMORY_STATUS_SUCCESS); return sbatch.out_ids; } -llama_memory_status llama_kv_cache_recurrent_state::get_status() const { +llama_memory_status llama_memory_recurrent_state::get_status() const { return status; } -const llama_ubatch & llama_kv_cache_recurrent_state::get_ubatch() const { +const llama_ubatch & llama_memory_recurrent_state::get_ubatch() const { assert(status == LLAMA_MEMORY_STATUS_SUCCESS); return ubatches[i_next]; } -uint32_t llama_kv_cache_recurrent_state::get_n_kv() const { - return is_full ? kv->size : kv->n; +uint32_t llama_memory_recurrent_state::get_n_rs() const { + return is_full ? mem->size : mem->n; } -uint32_t llama_kv_cache_recurrent_state::get_head() const { - return is_full ? 0 : kv->head; +uint32_t llama_memory_recurrent_state::get_head() const { + return is_full ? 0 : mem->head; } -int32_t llama_kv_cache_recurrent_state::get_rs_z() const { - return is_full ? 0 : kv->rs_z; +int32_t llama_memory_recurrent_state::get_rs_z() const { + return is_full ? 0 : mem->rs_z; } -uint32_t llama_kv_cache_recurrent_state::get_size() const { - return kv->size; +uint32_t llama_memory_recurrent_state::get_size() const { + return mem->size; } -ggml_tensor * llama_kv_cache_recurrent_state::get_k_l(int32_t il) const { - return kv->k_l[il]; +ggml_tensor * llama_memory_recurrent_state::get_r_l(int32_t il) const { + return mem->r_l[il]; } -ggml_tensor * llama_kv_cache_recurrent_state::get_v_l(int32_t il) const { - return kv->v_l[il]; +ggml_tensor * llama_memory_recurrent_state::get_s_l(int32_t il) const { + return mem->s_l[il]; } -int32_t llama_kv_cache_recurrent_state::s_copy(int i) const { - return kv->cells[i + kv->head].src0; +int32_t llama_memory_recurrent_state::s_copy(int i) const { + return mem->cells[i + mem->head].src0; } diff --git a/src/llama-kv-cache-recurrent.h b/src/llama-memory-recurrent.h similarity index 72% rename from src/llama-kv-cache-recurrent.h rename to src/llama-memory-recurrent.h index f9b01a6513393..290cc84ab3fbc 100644 --- a/src/llama-kv-cache-recurrent.h +++ b/src/llama-memory-recurrent.h @@ -8,22 +8,27 @@ #include <vector> // -// llama_kv_cache_recurrent +// llama_memory_recurrent // -// TODO: extract the KV cache state used for graph computation into llama_kv_cache_recurrent_state_i +// TODO: extract the cache state used for graph computation into llama_memory_recurrent_state_i // see the implementation of llama_kv_cache_unified_state_i for an example how to do it -class llama_kv_cache_recurrent : public llama_memory_i { +class llama_memory_recurrent : public llama_memory_i { public: - llama_kv_cache_recurrent( - const llama_model & model, - ggml_type type_k, - ggml_type type_v, - bool offload, - uint32_t kv_size, - uint32_t n_seq_max); - ~llama_kv_cache_recurrent() = default; + // this callback is used to filter out layers that should not be included in the cache + using layer_filter_cb = std::function<bool(int32_t il)>; + + llama_memory_recurrent( + const llama_model & model, + layer_filter_cb && filter, + ggml_type type_r, + ggml_type type_s, + bool offload, + uint32_t mem_size, + uint32_t n_seq_max); + + ~llama_memory_recurrent() = default; // // llama_memory_i @@ -51,7 +56,7 @@ class llama_kv_cache_recurrent : public llama_memory_i { bool prepare(const std::vector<llama_ubatch> & ubatches); - // find a contiguous slot of kv cells and emplace the ubatch there + // find a contiguous slot of memory cells and emplace the ubatch there bool find_slot(const llama_ubatch & ubatch); bool get_can_shift() const override; @@ -72,7 +77,7 @@ class llama_kv_cache_recurrent : public llama_memory_i { int32_t rs_z = -1; // TODO: optimize for recurrent state needs - struct kv_cell { + struct mem_cell { llama_pos pos = -1; int32_t src = -1; // used to know where states should be copied from int32_t src0 = -1; // like src, but only used when setting the inputs (allowing to copy once) @@ -88,15 +93,16 @@ class llama_kv_cache_recurrent : public llama_memory_i { return seq_id.empty(); } - bool is_same_seq(const kv_cell & other) const { + bool is_same_seq(const mem_cell & other) const { return seq_id == other.seq_id; } }; - std::vector<kv_cell> cells; + std::vector<mem_cell> cells; - std::vector<ggml_tensor *> k_l; // per layer - std::vector<ggml_tensor *> v_l; + // per layer + std::vector<ggml_tensor *> r_l; + std::vector<ggml_tensor *> s_l; private: //const llama_model & model; @@ -109,8 +115,8 @@ class llama_kv_cache_recurrent : public llama_memory_i { size_t total_size() const; - size_t size_k_bytes() const; - size_t size_v_bytes() const; + size_t size_r_bytes() const; + size_t size_s_bytes() const; void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const; void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const; @@ -119,24 +125,22 @@ class llama_kv_cache_recurrent : public llama_memory_i { bool state_read_data(llama_io_read_i & io, uint32_t cell_count); }; -class llama_kv_cache_recurrent_state : public llama_memory_state_i { +class llama_memory_recurrent_state : public llama_memory_state_i { public: // used for errors - llama_kv_cache_recurrent_state(llama_memory_status status); + llama_memory_recurrent_state(llama_memory_status status); // used to create a full-cache state - llama_kv_cache_recurrent_state( - llama_memory_status status, - llama_kv_cache_recurrent * kv); + llama_memory_recurrent_state( + llama_memory_recurrent * mem); // used to create a state from a batch - llama_kv_cache_recurrent_state( - llama_memory_status status, - llama_kv_cache_recurrent * kv, + llama_memory_recurrent_state( + llama_memory_recurrent * mem, llama_sbatch sbatch, std::vector<llama_ubatch> ubatches); - virtual ~llama_kv_cache_recurrent_state(); + virtual ~llama_memory_recurrent_state(); // // llama_memory_state_i @@ -151,23 +155,23 @@ class llama_kv_cache_recurrent_state : public llama_memory_state_i { const llama_ubatch & get_ubatch() const override; // - // llama_kv_cache_recurrent_state specific API + // llama_memory_recurrent_state specific API // - uint32_t get_n_kv() const; + uint32_t get_n_rs() const; uint32_t get_head() const; int32_t get_rs_z() const; uint32_t get_size() const; - ggml_tensor * get_k_l(int32_t il) const; - ggml_tensor * get_v_l(int32_t il) const; + ggml_tensor * get_r_l(int32_t il) const; + ggml_tensor * get_s_l(int32_t il) const; int32_t s_copy(int i) const; private: const llama_memory_status status; - llama_kv_cache_recurrent * kv; + llama_memory_recurrent * mem; llama_sbatch sbatch; diff --git a/src/llama-model.cpp b/src/llama-model.cpp index a5eb122f998d8..a5853f8b12dc0 100644 --- a/src/llama-model.cpp +++ b/src/llama-model.cpp @@ -8,7 +8,8 @@ #include "llama-kv-cache-unified.h" #include "llama-kv-cache-unified-iswa.h" -#include "llama-kv-cache-recurrent.h" +#include "llama-memory-hybrid.h" +#include "llama-memory-recurrent.h" #include "ggml-cpp.h" @@ -470,6 +471,10 @@ void llama_model::load_hparams(llama_model_loader & ml) { std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0); std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0); std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0); + std::fill( + hparams.recurrent_layer_arr.begin(), + hparams.recurrent_layer_arr.end(), + llm_arch_is_recurrent(ml.get_arch())); std::fill(hparams.rope_sections.begin(), hparams.rope_sections.end(), 0); @@ -9111,7 +9116,7 @@ struct llm_build_mamba : public llm_graph_context { // {n_embd, n_tokens} inpL = build_inp_embd(model.tok_embd); - ggml_tensor * state_copy = build_inp_s_copy(); + auto * rs_inp = build_rs_inp(); for (int il = 0; il < n_layer; ++il) { // norm @@ -9120,7 +9125,7 @@ struct llm_build_mamba : public llm_graph_context { LLM_NORM_RMS, il); cb(cur, "attn_norm", il); - cur = build_mamba_layer(gf, cur, state_copy, ubatch, il); + cur = build_mamba_layer(rs_inp, gf, cur, ubatch, il); if (il == n_layer - 1) { // skip computing output for unused tokens @@ -9158,12 +9163,12 @@ struct llm_build_mamba : public llm_graph_context { // TODO: split ggml_tensor * build_mamba_layer( - ggml_cgraph * gf, - ggml_tensor * cur, - ggml_tensor * state_copy, - const llama_ubatch & ubatch, - int il) const { - const auto * kv_state = static_cast<const llama_kv_cache_recurrent_state *>(mstate); + llm_graph_input_rs * inp, + ggml_cgraph * gf, + ggml_tensor * cur, + const llama_ubatch & ubatch, + int il) const { + const auto * kv_state = static_cast<const llama_memory_recurrent_state *>(mstate); const auto kv_head = kv_state->get_head(); @@ -9183,17 +9188,17 @@ struct llm_build_mamba : public llm_graph_context { GGML_ASSERT(ubatch.equal_seqs); GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs); - ggml_tensor * conv_states_all = kv_state->get_k_l(il); - ggml_tensor * ssm_states_all = kv_state->get_v_l(il); + ggml_tensor * conv_states_all = kv_state->get_r_l(il); + ggml_tensor * ssm_states_all = kv_state->get_s_l(il); // (ab)using the KV cache to store the states - ggml_tensor * conv = build_recurrent_state( - gf, conv_states_all, state_copy, - hparams.n_embd_k_s(), n_seqs); + ggml_tensor * conv = build_rs( + inp, gf, conv_states_all, + hparams.n_embd_r(), n_seqs); conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner, n_seqs); - ggml_tensor * ssm = build_recurrent_state( - gf, ssm_states_all, state_copy, - hparams.n_embd_v_s(), n_seqs); + ggml_tensor * ssm = build_rs( + inp, gf, ssm_states_all, + hparams.n_embd_s(), n_seqs); ssm = ggml_reshape_3d(ctx0, ssm, d_state, d_inner, n_seqs); // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs} @@ -11904,13 +11909,13 @@ struct llm_build_rwkv6_base : public llm_graph_context { } ggml_tensor * build_rwkv6_time_mix( + llm_graph_input_rs * inp, ggml_cgraph * gf, ggml_tensor * cur, ggml_tensor * x_prev, - ggml_tensor * state_copy, const llama_ubatch & ubatch, int il) const { - const auto * kv_state = static_cast<const llama_kv_cache_recurrent_state *>(mstate); + const auto * kv_state = static_cast<const llama_memory_recurrent_state *>(mstate); const auto n_tokens = ubatch.n_tokens; const auto n_seqs = ubatch.n_seqs; @@ -12031,9 +12036,9 @@ struct llm_build_rwkv6_base : public llm_graph_context { k = ggml_sub(ctx0, k, ggml_mul(ctx0, k, w)); } - ggml_tensor * wkv_state = build_recurrent_state( - gf, kv_state->get_v_l(il), state_copy, - hparams.n_embd_v_s(), n_seqs); + ggml_tensor * wkv_state = build_rs( + inp, gf, kv_state->get_s_l(il), + hparams.n_embd_s(), n_seqs); ggml_tensor * wkv_output; if (is_qrwkv) { @@ -12051,9 +12056,9 @@ struct llm_build_rwkv6_base : public llm_graph_context { wkv_state, ggml_view_1d( ctx0, - kv_state->get_v_l(il), - hparams.n_embd_v_s() * n_seqs, - hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_state->get_v_l(il)) + kv_state->get_s_l(il), + hparams.n_embd_s() * n_seqs, + hparams.n_embd_s() * kv_head * ggml_element_size(kv_state->get_s_l(il)) ) ) ); @@ -12087,7 +12092,7 @@ struct llm_build_rwkv6 : public llm_build_rwkv6_base { inpL = build_inp_embd(model.tok_embd); inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1); - ggml_tensor * state_copy = build_inp_s_copy(); + auto * rs_inp = build_rs_inp(); const auto n_embd = hparams.n_embd; const auto n_seq_tokens = ubatch.n_seq_tokens; @@ -12097,9 +12102,7 @@ struct llm_build_rwkv6 : public llm_build_rwkv6_base { const llama_layer * layer = &model.layers[il]; inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs); - ggml_tensor * token_shift = build_rwkv_token_shift_load( - gf, state_copy, ubatch, il - ); + ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, gf, ubatch, il); ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0); ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift)); @@ -12114,7 +12117,7 @@ struct llm_build_rwkv6 : public llm_build_rwkv6_base { 1 ); - cur = build_rwkv6_time_mix(gf, att_norm, x_prev, state_copy, ubatch, il); + cur = build_rwkv6_time_mix(rs_inp, gf, att_norm, x_prev, ubatch, il); ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); cb(ffn_inp, "ffn_inp", il); @@ -12177,14 +12180,14 @@ struct llm_build_rwkv6 : public llm_build_rwkv6_base { // ref: https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1/blob/main/modeling_rwkv6qwen2.py struct llm_build_rwkv6qwen2 : public llm_build_rwkv6_base { llm_build_rwkv6qwen2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv6_base(model, params) { - GGML_ASSERT(n_embd == hparams.n_embd_k_s()); + GGML_ASSERT(n_embd == hparams.n_embd_r()); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); - ggml_tensor * state_copy = build_inp_s_copy(); + auto * rs_inp = build_rs_inp(); const auto n_embd = hparams.n_embd; const auto n_seq_tokens = ubatch.n_seq_tokens; @@ -12194,9 +12197,7 @@ struct llm_build_rwkv6qwen2 : public llm_build_rwkv6_base { const llama_layer * layer = &model.layers[il]; inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs); - ggml_tensor * token_shift = build_rwkv_token_shift_load( - gf, state_copy, ubatch, il - ); + ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, gf, ubatch, il); ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il); cb(att_norm, "attn_norm", il); @@ -12208,7 +12209,7 @@ struct llm_build_rwkv6qwen2 : public llm_build_rwkv6_base { 1 ); - cur = build_rwkv6_time_mix(gf, att_norm, x_prev, state_copy, ubatch, il); + cur = build_rwkv6_time_mix(rs_inp, gf, att_norm, x_prev, ubatch, il); token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)); ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il)); @@ -12296,14 +12297,14 @@ struct llm_build_rwkv7_base : public llm_graph_context { } ggml_tensor * build_rwkv7_time_mix( + llm_graph_input_rs * inp, ggml_cgraph * gf, ggml_tensor * cur, ggml_tensor * x_prev, - ggml_tensor * state_copy, ggml_tensor *& first_layer_value, const llama_ubatch & ubatch, int il) const { - const auto * kv_state = static_cast<const llama_kv_cache_recurrent_state *>(mstate); + const auto * kv_state = static_cast<const llama_memory_recurrent_state *>(mstate); const auto n_tokens = ubatch.n_tokens; const auto n_seqs = ubatch.n_seqs; @@ -12382,9 +12383,9 @@ struct llm_build_rwkv7_base : public llm_graph_context { v = ggml_reshape_3d(ctx0, v, head_size, head_count, n_tokens); a = ggml_reshape_3d(ctx0, a, head_size, head_count, n_tokens); - ggml_tensor * wkv_state = build_recurrent_state( - gf, kv_state->get_v_l(il), state_copy, - hparams.n_embd_v_s(), n_seqs); + ggml_tensor * wkv_state = build_rs( + inp, gf, kv_state->get_s_l(il), + hparams.n_embd_s(), n_seqs); ggml_tensor * wkv_output = ggml_rwkv_wkv7(ctx0, r, w, k, v, ggml_neg(ctx0, kk), ggml_mul(ctx0, kk, a), wkv_state); cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0); @@ -12397,9 +12398,9 @@ struct llm_build_rwkv7_base : public llm_graph_context { wkv_state, ggml_view_1d( ctx0, - kv_state->get_v_l(il), - hparams.n_embd_v_s() * n_seqs, - hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_state->get_v_l(il)) + kv_state->get_s_l(il), + hparams.n_embd_s() * n_seqs, + hparams.n_embd_s() * kv_head * ggml_element_size(kv_state->get_s_l(il)) ) ) ); @@ -12440,7 +12441,7 @@ struct llm_build_rwkv7 : public llm_build_rwkv7_base { inpL = build_inp_embd(model.tok_embd); inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1); - ggml_tensor * state_copy = build_inp_s_copy(); + auto * rs_inp = build_rs_inp(); const auto n_embd = hparams.n_embd; const auto n_seq_tokens = ubatch.n_seq_tokens; @@ -12450,9 +12451,7 @@ struct llm_build_rwkv7 : public llm_build_rwkv7_base { const llama_layer * layer = &model.layers[il]; inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs); - ggml_tensor * token_shift = build_rwkv_token_shift_load( - gf, state_copy, ubatch, il - ); + ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, gf, ubatch, il); ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0); ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift)); @@ -12467,7 +12466,7 @@ struct llm_build_rwkv7 : public llm_build_rwkv7_base { 1 ); - cur = build_rwkv7_time_mix(gf, att_norm, x_prev, state_copy, v_first, ubatch, il); + cur = build_rwkv7_time_mix(rs_inp, gf, att_norm, x_prev, v_first, ubatch, il); ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); cb(ffn_inp, "ffn_inp", il); @@ -12525,7 +12524,7 @@ struct llm_build_rwkv7 : public llm_build_rwkv7_base { struct llm_build_arwkv7 : public llm_build_rwkv7_base { llm_build_arwkv7(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv7_base(model, params) { - GGML_ASSERT(n_embd == hparams.n_embd_k_s()); + GGML_ASSERT(n_embd == hparams.n_embd_r()); ggml_tensor * cur; ggml_tensor * inpL; @@ -12533,7 +12532,7 @@ struct llm_build_arwkv7 : public llm_build_rwkv7_base { inpL = build_inp_embd(model.tok_embd); - ggml_tensor * state_copy = build_inp_s_copy(); + auto * rs_inp = build_rs_inp(); const auto n_embd = hparams.n_embd; const auto n_seq_tokens = ubatch.n_seq_tokens; @@ -12543,9 +12542,7 @@ struct llm_build_arwkv7 : public llm_build_rwkv7_base { const llama_layer * layer = &model.layers[il]; inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs); - ggml_tensor * token_shift = build_rwkv_token_shift_load( - gf, state_copy, ubatch, il - ); + ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, gf, ubatch, il); ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il); cb(att_norm, "attn_norm", il); @@ -12557,7 +12554,7 @@ struct llm_build_arwkv7 : public llm_build_rwkv7_base { 1 ); - cur = build_rwkv7_time_mix(gf, att_norm, x_prev, state_copy, v_first, ubatch, il); + cur = build_rwkv7_time_mix(rs_inp, gf, att_norm, x_prev, v_first, ubatch, il); token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)); ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il)); @@ -13738,6 +13735,8 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params, llama_memory_i * res; switch (arch) { + // Models that need specific instantiation should be handled in the + // switch statement case LLM_ARCH_BERT: case LLM_ARCH_JINA_BERT_V2: case LLM_ARCH_NOMIC_BERT: @@ -13747,57 +13746,75 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params, { res = nullptr; } break; - case LLM_ARCH_MAMBA: - case LLM_ARCH_RWKV6: - case LLM_ARCH_RWKV6QWEN2: - case LLM_ARCH_RWKV7: - case LLM_ARCH_ARWKV7: - { - res = new llama_kv_cache_recurrent( - *this, - GGML_TYPE_F32, - GGML_TYPE_F32, - cparams.offload_kqv, - std::max((uint32_t) 1, cparams.n_seq_max), - cparams.n_seq_max); - } break; + // Models that need standard caching should rely on recurrent/hybrid + // checks default: { - const auto padding = llama_kv_cache_unified::get_padding(cparams); - - cparams.n_ctx = GGML_PAD(cparams.n_ctx, padding); - - LLAMA_LOG_DEBUG("%s: n_ctx = %u (padded)\n", __func__, cparams.n_ctx); - - if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) { - GGML_ASSERT(hparams.is_swa_any()); - - res = new llama_kv_cache_unified_iswa( - *this, - params.type_k, - params.type_v, - !cparams.flash_attn, - cparams.offload_kqv, - params.swa_full, - cparams.n_ctx, - cparams.n_seq_max, - cparams.n_ubatch, - padding); - } else { - GGML_ASSERT(!hparams.is_swa_any()); - - res = new llama_kv_cache_unified( + if (llm_arch_is_recurrent(arch)) { + res = new llama_memory_recurrent( *this, nullptr, - params.type_k, - params.type_v, - !cparams.flash_attn, + GGML_TYPE_F32, + GGML_TYPE_F32, cparams.offload_kqv, - cparams.n_ctx, - cparams.n_seq_max, - padding, - hparams.n_swa, - hparams.swa_type); + std::max((uint32_t) 1, cparams.n_seq_max), + cparams.n_seq_max); + } else if (llm_arch_is_hybrid(arch)) { + const auto padding = llama_kv_cache_unified::get_padding(cparams); + + cparams.n_ctx = GGML_PAD(cparams.n_ctx, padding); + + res = new llama_memory_hybrid( + /* model */ *this, + /* attn_type_k */ params.type_k, + /* attn_type_v */ params.type_v, + /* attn_v_trans */ !cparams.flash_attn, + /* attn_kv_size */ cparams.n_ctx, + /* attn_n_pad */ padding, + /* attn_n_swa */ hparams.n_swa, + /* attn_swa_type */ hparams.swa_type, + /* recurrent_type_k */ GGML_TYPE_F32, + /* recurrent_type_v */ GGML_TYPE_F32, + /* recurrent_kv_size */ std::max((uint32_t) 1, cparams.n_seq_max), + /* n_seq_max */ cparams.n_seq_max, + /* offload */ cparams.offload_kqv); + } else { + const auto padding = llama_kv_cache_unified::get_padding(cparams); + + cparams.n_ctx = GGML_PAD(cparams.n_ctx, padding); + + LLAMA_LOG_DEBUG("%s: n_ctx = %u (padded)\n", __func__, cparams.n_ctx); + + if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) { + GGML_ASSERT(hparams.is_swa_any()); + + res = new llama_kv_cache_unified_iswa( + *this, + params.type_k, + params.type_v, + !cparams.flash_attn, + cparams.offload_kqv, + params.swa_full, + cparams.n_ctx, + cparams.n_seq_max, + cparams.n_ubatch, + padding); + } else { + GGML_ASSERT(!hparams.is_swa_any()); + + res = new llama_kv_cache_unified( + *this, + nullptr, + params.type_k, + params.type_v, + !cparams.flash_attn, + cparams.offload_kqv, + cparams.n_ctx, + cparams.n_seq_max, + padding, + hparams.n_swa, + hparams.swa_type); + } } } } @@ -14377,14 +14394,7 @@ llama_token llama_model_decoder_start_token(const llama_model * model) { } bool llama_model_is_recurrent(const llama_model * model) { - switch (model->arch) { - case LLM_ARCH_MAMBA: return true; - case LLM_ARCH_RWKV6: return true; - case LLM_ARCH_RWKV6QWEN2: return true; - case LLM_ARCH_RWKV7: return true; - case LLM_ARCH_ARWKV7: return true; - default: return false; - } + return llm_arch_is_recurrent(model->arch); } const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model) {