From dae0b09978629c51683115346a08c33846842463 Mon Sep 17 00:00:00 2001
From: Jeff Reback <jeff@reback.net>
Date: Sat, 22 Aug 2015 17:45:03 -0400
Subject: [PATCH 1/3] DEPR: remove DataFrame.colSpace in favor of col_space,
 circa v0.8.0

---
 doc/source/whatsnew/v0.17.0.txt | 1 +
 pandas/core/frame.py            | 7 +------
 2 files changed, 2 insertions(+), 6 deletions(-)

diff --git a/doc/source/whatsnew/v0.17.0.txt b/doc/source/whatsnew/v0.17.0.txt
index d30b7875e44b7..599e030c3f919 100644
--- a/doc/source/whatsnew/v0.17.0.txt
+++ b/doc/source/whatsnew/v0.17.0.txt
@@ -672,6 +672,7 @@ Removal of prior version deprecations/changes
 - Remove use of some deprecated numpy comparison operations, mainly in tests. (:issue:`10569`)
 - Removal of ``na_last`` parameters from ``Series.order()`` and ``Series.sort()``, in favor of ``na_position``, xref (:issue:`5231`)
 - Remove of ``percentile_width`` from ``.describe()``, in favor of ``percentiles``. (:issue:`7088`)
+- Removal of ``colSpace`` parameter from ``DataFrame.to_string()``, in favor of ``col_space``, circa 0.8.0 version.
 
 .. _whatsnew_0170.performance:
 
diff --git a/pandas/core/frame.py b/pandas/core/frame.py
index 1f222f9f99cbe..6f134f0181fe0 100644
--- a/pandas/core/frame.py
+++ b/pandas/core/frame.py
@@ -1396,7 +1396,7 @@ def to_stata(
         writer.write_file()
 
     @Appender(fmt.docstring_to_string, indents=1)
-    def to_string(self, buf=None, columns=None, col_space=None, colSpace=None,
+    def to_string(self, buf=None, columns=None, col_space=None,
                   header=True, index=True, na_rep='NaN', formatters=None,
                   float_format=None, sparsify=None, index_names=True,
                   justify=None, line_width=None, max_rows=None, max_cols=None,
@@ -1405,11 +1405,6 @@ def to_string(self, buf=None, columns=None, col_space=None, colSpace=None,
         Render a DataFrame to a console-friendly tabular output.
         """
 
-        if colSpace is not None:  # pragma: no cover
-            warnings.warn("colSpace is deprecated, use col_space",
-                          FutureWarning)
-            col_space = colSpace
-
         formatter = fmt.DataFrameFormatter(self, buf=buf, columns=columns,
                                            col_space=col_space, na_rep=na_rep,
                                            formatters=formatters,

From 35f1eafc60a7f671fb6051093315667f34e4e7a2 Mon Sep 17 00:00:00 2001
From: Jeff Reback <jeff@reback.net>
Date: Sat, 22 Aug 2015 17:49:29 -0400
Subject: [PATCH 2/3] DEPR: remove auto broadcasting with a time-series, xref
 #2304

---
 doc/source/whatsnew/v0.17.0.txt    | 30 +++++++++++++
 pandas/core/frame.py               | 11 +----
 pandas/sparse/tests/test_sparse.py | 15 ++++---
 pandas/tests/test_frame.py         | 67 +++++++++++++++---------------
 pandas/tests/test_series.py        |  8 ++--
 5 files changed, 79 insertions(+), 52 deletions(-)

diff --git a/doc/source/whatsnew/v0.17.0.txt b/doc/source/whatsnew/v0.17.0.txt
index 599e030c3f919..1f723a9c533fe 100644
--- a/doc/source/whatsnew/v0.17.0.txt
+++ b/doc/source/whatsnew/v0.17.0.txt
@@ -37,6 +37,7 @@ Highlights include:
 - Support for ``Series.dt.strftime`` to generate formatted strings for datetime-likes, see :ref:`here <whatsnew_0170.strftime>`
 - Development installed versions of pandas will now have ``PEP440`` compliant version strings (:issue:`9518`)
 - Support for reading SAS xport files, see :ref:`here <whatsnew_0170.enhancements.sas_xport>`
+- Removal of the automatic TimeSeries broadcasting, deprecated since 0.8.0, see :ref:`here <whatsnew_0170.prior_deprecations>`
 
 Check the :ref:`API Changes <whatsnew_0170.api>` and :ref:`deprecations <whatsnew_0170.deprecations>` before updating.
 
@@ -673,6 +674,35 @@ Removal of prior version deprecations/changes
 - Removal of ``na_last`` parameters from ``Series.order()`` and ``Series.sort()``, in favor of ``na_position``, xref (:issue:`5231`)
 - Remove of ``percentile_width`` from ``.describe()``, in favor of ``percentiles``. (:issue:`7088`)
 - Removal of ``colSpace`` parameter from ``DataFrame.to_string()``, in favor of ``col_space``, circa 0.8.0 version.
+- Removal of automatic time-series broadcasting (:issue:`2304`)
+
+   .. ipython :: python
+
+      np.random.seed(1234)
+      df = DataFrame(np.random.randn(5,2),columns=list('AB'),index=date_range('20130101',periods=5))
+      df
+
+   Previously
+
+   .. code-block:: python
+
+      In [3]: df + df.A
+      FutureWarning: TimeSeries broadcasting along DataFrame index by default is deprecated.
+      Please use DataFrame.<op> to explicitly broadcast arithmetic operations along the index
+
+      Out[3]:
+                         A         B
+      2013-01-01  0.942870 -0.719541
+      2013-01-02  2.865414  1.120055
+      2013-01-03 -1.441177  0.166574
+      2013-01-04  1.719177  0.223065
+      2013-01-05  0.031393 -2.226989
+
+   Current
+
+   .. ipython :: python
+
+      df.add(df.A,axis='index')
 
 .. _whatsnew_0170.performance:
 
diff --git a/pandas/core/frame.py b/pandas/core/frame.py
index 6f134f0181fe0..a9979b4eb3810 100644
--- a/pandas/core/frame.py
+++ b/pandas/core/frame.py
@@ -3354,16 +3354,7 @@ def _combine_series_infer(self, other, func, level=None, fill_value=None):
             return self._constructor(data=self._series, index=self.index,
                                      columns=self.columns)
 
-        # teeny hack because one does DataFrame + TimeSeries all the time
-        if self.index.is_all_dates and other.index.is_all_dates:
-            warnings.warn(("TimeSeries broadcasting along DataFrame index "
-                           "by default is deprecated. Please use "
-                           "DataFrame.<op> to explicitly broadcast arithmetic "
-                           "operations along the index"),
-                          FutureWarning)
-            return self._combine_match_index(other, func, level=level, fill_value=fill_value)
-        else:
-            return self._combine_match_columns(other, func, level=level, fill_value=fill_value)
+        return self._combine_match_columns(other, func, level=level, fill_value=fill_value)
 
     def _combine_match_index(self, other, func, level=None, fill_value=None):
         left, right = self.align(other, join='outer', axis=0, level=level, copy=False)
diff --git a/pandas/sparse/tests/test_sparse.py b/pandas/sparse/tests/test_sparse.py
index 103f3992f950a..1a76e0f3c641f 100644
--- a/pandas/sparse/tests/test_sparse.py
+++ b/pandas/sparse/tests/test_sparse.py
@@ -1189,14 +1189,19 @@ def _compare_to_dense(a, b, da, db, op):
                   frame['A'].reindex(fidx[::2]),
                   SparseSeries([], index=[])]
 
-        for op in ops:
+        for op in opnames:
             _compare_to_dense(frame, frame[::2], frame.to_dense(),
-                              frame[::2].to_dense(), op)
+                              frame[::2].to_dense(), getattr(operator, op))
+
+            # 2304, no auto-broadcasting
             for i, s in enumerate(series):
+                f = lambda a, b: getattr(a,op)(b,axis='index')
                 _compare_to_dense(frame, s, frame.to_dense(),
-                                  s.to_dense(), op)
-                _compare_to_dense(s, frame, s.to_dense(),
-                                  frame.to_dense(), op)
+                                  s.to_dense(), f)
+
+                # rops are not implemented
+                #_compare_to_dense(s, frame, s.to_dense(),
+                #                  frame.to_dense(), f)
 
         # cross-sectional operations
         series = [frame.xs(fidx[0]),
diff --git a/pandas/tests/test_frame.py b/pandas/tests/test_frame.py
index 022594e296c2a..9687d9b742126 100644
--- a/pandas/tests/test_frame.py
+++ b/pandas/tests/test_frame.py
@@ -6039,46 +6039,47 @@ def test_combineSeries(self):
         #added = self.mixed_int + (100*series).astype('int32')
         #_check_mixed_int(added, dtype = dict(A = 'int32', B = 'float64', C = 'int32', D = 'int64'))
 
-        # TimeSeries
-        buf = StringIO()
-        tmp = sys.stderr
-        sys.stderr = buf
 
-        try:
-            ts = self.tsframe['A']
-            added = self.tsframe + ts
-
-            for key, col in compat.iteritems(self.tsframe):
-                result = col + ts
-                assert_series_equal(added[key], result, check_names=False)
-                self.assertEqual(added[key].name, key)
-                if col.name == ts.name:
-                    self.assertEqual(result.name, 'A')
-                else:
-                    self.assertTrue(result.name is None)
+        # TimeSeries
+        ts = self.tsframe['A']
+
+        # 10890
+        # we no longer allow auto timeseries broadcasting
+        # and require explict broadcasting
+        added = self.tsframe.add(ts, axis='index')
+
+        for key, col in compat.iteritems(self.tsframe):
+            result = col + ts
+            assert_series_equal(added[key], result, check_names=False)
+            self.assertEqual(added[key].name, key)
+            if col.name == ts.name:
+                self.assertEqual(result.name, 'A')
+            else:
+                self.assertTrue(result.name is None)
 
-            smaller_frame = self.tsframe[:-5]
-            smaller_added = smaller_frame + ts
+        smaller_frame = self.tsframe[:-5]
+        smaller_added = smaller_frame.add(ts, axis='index')
 
-            self.assertTrue(smaller_added.index.equals(self.tsframe.index))
+        self.assertTrue(smaller_added.index.equals(self.tsframe.index))
 
-            smaller_ts = ts[:-5]
-            smaller_added2 = self.tsframe + smaller_ts
-            assert_frame_equal(smaller_added, smaller_added2)
+        smaller_ts = ts[:-5]
+        smaller_added2 = self.tsframe.add(smaller_ts, axis='index')
+        assert_frame_equal(smaller_added, smaller_added2)
 
-            # length 0
-            result = self.tsframe + ts[:0]
+        # length 0, result is all-nan
+        result = self.tsframe.add(ts[:0], axis='index')
+        expected = DataFrame(np.nan,index=self.tsframe.index,columns=self.tsframe.columns)
+        assert_frame_equal(result, expected)
 
-            # Frame is length 0
-            result = self.tsframe[:0] + ts
-            self.assertEqual(len(result), 0)
+        # Frame is all-nan
+        result = self.tsframe[:0].add(ts, axis='index')
+        expected = DataFrame(np.nan,index=self.tsframe.index,columns=self.tsframe.columns)
+        assert_frame_equal(result, expected)
 
-            # empty but with non-empty index
-            frame = self.tsframe[:1].reindex(columns=[])
-            result = frame * ts
-            self.assertEqual(len(result), len(ts))
-        finally:
-            sys.stderr = tmp
+        # empty but with non-empty index
+        frame = self.tsframe[:1].reindex(columns=[])
+        result = frame.mul(ts,axis='index')
+        self.assertEqual(len(result), len(ts))
 
     def test_combineFunc(self):
         result = self.frame * 2
diff --git a/pandas/tests/test_series.py b/pandas/tests/test_series.py
index 3567c98e71bce..8f241bdc25d8b 100644
--- a/pandas/tests/test_series.py
+++ b/pandas/tests/test_series.py
@@ -4515,10 +4515,10 @@ def test_operators_frame(self):
         # rpow does not work with DataFrame
         df = DataFrame({'A': self.ts})
 
-        tm.assert_almost_equal(self.ts + self.ts, (self.ts + df)['A'])
-        tm.assert_almost_equal(self.ts ** self.ts, (self.ts ** df)['A'])
-        tm.assert_almost_equal(self.ts < self.ts, (self.ts < df)['A'])
-        tm.assert_almost_equal(self.ts / self.ts, (self.ts / df)['A'])
+        tm.assert_almost_equal(self.ts + self.ts, self.ts + df['A'])
+        tm.assert_almost_equal(self.ts ** self.ts, self.ts ** df['A'])
+        tm.assert_almost_equal(self.ts < self.ts, self.ts < df['A'])
+        tm.assert_almost_equal(self.ts / self.ts, self.ts / df['A'])
 
     def test_operators_combine(self):
         def _check_fill(meth, op, a, b, fill_value=0):

From 5e82396c821ba5bc4d8a5a1ff8a61d9c32ad0f3d Mon Sep 17 00:00:00 2001
From: Jeff Reback <jeff@reback.net>
Date: Sat, 22 Aug 2015 18:30:28 -0400
Subject: [PATCH 3/3] DEPR: deprecate TimeSeries officially

---
 doc/source/whatsnew/v0.17.0.txt                  |  1 +
 pandas/core/series.py                            | 10 +++++++++-
 pandas/io/pytables.py                            |  5 +++--
 pandas/io/tests/generate_legacy_storage_files.py |  8 ++++----
 pandas/sparse/series.py                          | 11 +++++++++--
 pandas/sparse/tests/test_sparse.py               | 10 ++++++++--
 pandas/tests/test_groupby.py                     |  3 +--
 pandas/tests/test_series.py                      |  6 ++++++
 pandas/tests/test_strings.py                     |  2 +-
 pandas/tseries/tests/test_period.py              |  4 ++--
 pandas/tseries/tests/test_resample.py            | 12 ++++++------
 pandas/tseries/tests/test_timeseries.py          |  4 ++--
 pandas/tseries/tests/test_timeseries_legacy.py   |  2 +-
 pandas/tseries/util.py                           |  2 +-
 14 files changed, 54 insertions(+), 26 deletions(-)

diff --git a/doc/source/whatsnew/v0.17.0.txt b/doc/source/whatsnew/v0.17.0.txt
index 1f723a9c533fe..7415ac01ada7a 100644
--- a/doc/source/whatsnew/v0.17.0.txt
+++ b/doc/source/whatsnew/v0.17.0.txt
@@ -664,6 +664,7 @@ Deprecations
   can easily be replaced by using the ``add`` and ``mul`` methods:
   ``DataFrame.add(other, fill_value=0)`` and ``DataFrame.mul(other, fill_value=1.)``
   (:issue:`10735`).
+- ``TimeSeries`` deprecated in favor of ``Series`` (note that this has been alias since 0.13.0), (:issue:`10890`)
 
 .. _whatsnew_0170.prior_deprecations:
 
diff --git a/pandas/core/series.py b/pandas/core/series.py
index 8768d0e139e7b..0c17104bb701e 100644
--- a/pandas/core/series.py
+++ b/pandas/core/series.py
@@ -261,6 +261,7 @@ def _set_axis(self, axis, labels, fastpath=False):
 
         is_all_dates = labels.is_all_dates
         if is_all_dates:
+
             if not isinstance(labels, (DatetimeIndex, PeriodIndex, TimedeltaIndex)):
                 labels = DatetimeIndex(labels)
 
@@ -2779,7 +2780,14 @@ def _try_cast(arr, take_fast_path):
     return subarr
 
 # backwards compatiblity
-TimeSeries = Series
+class TimeSeries(Series):
+
+    def __init__(self, *args, **kwargs):
+        # deprecation TimeSeries, #10890
+        warnings.warn("TimeSeries is deprecated. Please use Series",
+                      FutureWarning, stacklevel=2)
+
+        super(TimeSeries, self).__init__(*args, **kwargs)
 
 #----------------------------------------------------------------------
 # Add plotting methods to Series
diff --git a/pandas/io/pytables.py b/pandas/io/pytables.py
index 8ef6363f836ae..b23a183cdc145 100644
--- a/pandas/io/pytables.py
+++ b/pandas/io/pytables.py
@@ -13,7 +13,8 @@
 import os
 
 import numpy as np
-from pandas import (Series, TimeSeries, DataFrame, Panel, Panel4D, Index,
+import pandas as pd
+from pandas import (Series, DataFrame, Panel, Panel4D, Index,
                     MultiIndex, Int64Index, Timestamp)
 from pandas.sparse.api import SparseSeries, SparseDataFrame, SparsePanel
 from pandas.sparse.array import BlockIndex, IntIndex
@@ -164,7 +165,7 @@ class DuplicateWarning(Warning):
 
     Series: u('series'),
     SparseSeries: u('sparse_series'),
-    TimeSeries: u('series'),
+    pd.TimeSeries: u('series'),
     DataFrame: u('frame'),
     SparseDataFrame: u('sparse_frame'),
     Panel: u('wide'),
diff --git a/pandas/io/tests/generate_legacy_storage_files.py b/pandas/io/tests/generate_legacy_storage_files.py
index 86c5a9e0d7f19..0ca5ced1b8d1a 100644
--- a/pandas/io/tests/generate_legacy_storage_files.py
+++ b/pandas/io/tests/generate_legacy_storage_files.py
@@ -1,8 +1,8 @@
 """ self-contained to write legacy storage (pickle/msgpack) files """
 from __future__ import print_function
 from distutils.version import LooseVersion
-from pandas import (Series, TimeSeries, DataFrame, Panel,
-                    SparseSeries, SparseTimeSeries, SparseDataFrame, SparsePanel,
+from pandas import (Series, DataFrame, Panel,
+                    SparseSeries, SparseDataFrame, SparsePanel,
                     Index, MultiIndex, PeriodIndex, bdate_range, to_msgpack,
                     date_range, period_range, bdate_range, Timestamp, Categorical,
                     Period)
@@ -36,7 +36,7 @@ def _create_sp_tsseries():
     arr[-1:] = nan
 
     date_index = bdate_range('1/1/2011', periods=len(arr))
-    bseries = SparseTimeSeries(arr, index=date_index, kind='block')
+    bseries = SparseSeries(arr, index=date_index, kind='block')
     bseries.name = 'btsseries'
     return bseries
 
@@ -78,7 +78,7 @@ def create_data():
     series = dict(float=Series(data['A']),
                   int=Series(data['B']),
                   mixed=Series(data['E']),
-                  ts=TimeSeries(np.arange(10).astype(np.int64), index=date_range('20130101',periods=10)),
+                  ts=Series(np.arange(10).astype(np.int64), index=date_range('20130101',periods=10)),
                   mi=Series(np.arange(5).astype(np.float64),
                             index=MultiIndex.from_tuples(tuple(zip(*[[1, 1, 2, 2, 2], [3, 4, 3, 4, 5]])),
                                                          names=['one', 'two'])),
diff --git a/pandas/sparse/series.py b/pandas/sparse/series.py
index a8addfab17c26..62d6a34655e1d 100644
--- a/pandas/sparse/series.py
+++ b/pandas/sparse/series.py
@@ -7,7 +7,7 @@
 
 from numpy import nan, ndarray
 import numpy as np
-
+import warnings
 import operator
 
 from pandas.core.common import isnull, _values_from_object, _maybe_match_name
@@ -770,4 +770,11 @@ def from_coo(cls, A, dense_index=False):
                                    bool_method=None, use_numexpr=False, force=True)
 
 # backwards compatiblity
-SparseTimeSeries = SparseSeries
+class SparseTimeSeries(SparseSeries):
+
+    def __init__(self, *args, **kwargs):
+        # deprecation TimeSeries, #10890
+        warnings.warn("SparseTimeSeries is deprecated. Please use SparseSeries",
+                      FutureWarning, stacklevel=2)
+
+        super(SparseTimeSeries, self).__init__(*args, **kwargs)
diff --git a/pandas/sparse/tests/test_sparse.py b/pandas/sparse/tests/test_sparse.py
index 1a76e0f3c641f..8d24025f3c3cf 100644
--- a/pandas/sparse/tests/test_sparse.py
+++ b/pandas/sparse/tests/test_sparse.py
@@ -30,7 +30,7 @@
 import pandas.sparse.frame as spf
 
 from pandas._sparse import BlockIndex, IntIndex
-from pandas.sparse.api import (SparseSeries, SparseTimeSeries,
+from pandas.sparse.api import (SparseSeries,
                                SparseDataFrame, SparsePanel,
                                SparseArray)
 import pandas.tests.test_frame as test_frame
@@ -160,6 +160,12 @@ def test_iteration_and_str(self):
         [x for x in self.bseries]
         str(self.bseries)
 
+    def test_TimeSeries_deprecation(self):
+
+        # deprecation TimeSeries, #10890
+        with tm.assert_produces_warning(FutureWarning):
+            pd.SparseTimeSeries(1,index=pd.date_range('20130101',periods=3))
+
     def test_construct_DataFrame_with_sp_series(self):
         # it works!
         df = DataFrame({'col': self.bseries})
@@ -258,7 +264,7 @@ def _check_const(sparse, name):
         # Sparse time series works
         date_index = bdate_range('1/1/2000', periods=len(self.bseries))
         s5 = SparseSeries(self.bseries, index=date_index)
-        tm.assertIsInstance(s5, SparseTimeSeries)
+        tm.assertIsInstance(s5, SparseSeries)
 
         # pass Series
         bseries2 = SparseSeries(self.bseries.to_dense())
diff --git a/pandas/tests/test_groupby.py b/pandas/tests/test_groupby.py
index fa2e6e911ab5e..d1073b6c4d7ab 100644
--- a/pandas/tests/test_groupby.py
+++ b/pandas/tests/test_groupby.py
@@ -502,9 +502,8 @@ def test_groupby_bounds_check(self):
         self.assertRaises(AssertionError, pd.algos.groupby_object,a, b)
 
     def test_groupby_grouper_f_sanity_checked(self):
-        import pandas as pd
         dates = date_range('01-Jan-2013', periods=12, freq='MS')
-        ts = pd.TimeSeries(np.random.randn(12), index=dates)
+        ts = Series(np.random.randn(12), index=dates)
 
         # GH3035
         # index.map is used to apply grouper to the index
diff --git a/pandas/tests/test_series.py b/pandas/tests/test_series.py
index 8f241bdc25d8b..6424a190dba9f 100644
--- a/pandas/tests/test_series.py
+++ b/pandas/tests/test_series.py
@@ -666,6 +666,12 @@ def test_astype(self):
             self.assertEqual(astyped.dtype, dtype)
             self.assertEqual(astyped.name, s.name)
 
+    def test_TimeSeries_deprecation(self):
+
+        # deprecation TimeSeries, #10890
+        with tm.assert_produces_warning(FutureWarning):
+            pd.TimeSeries(1,index=date_range('20130101',periods=3))
+
     def test_constructor(self):
         # Recognize TimeSeries
         self.assertTrue(self.ts.is_time_series)
diff --git a/pandas/tests/test_strings.py b/pandas/tests/test_strings.py
index 6a9ad175f42dd..7886a63c6df46 100644
--- a/pandas/tests/test_strings.py
+++ b/pandas/tests/test_strings.py
@@ -15,7 +15,7 @@
 
 from pandas.compat import range, lrange, u, unichr
 import pandas.compat as compat
-from pandas import (Index, Series, TimeSeries, DataFrame, isnull, notnull,
+from pandas import (Index, Series, DataFrame, isnull, notnull,
                     bdate_range, date_range, MultiIndex)
 import pandas.core.common as com
 
diff --git a/pandas/tseries/tests/test_period.py b/pandas/tseries/tests/test_period.py
index eb5c6759bfa45..e0434bfec3be4 100644
--- a/pandas/tseries/tests/test_period.py
+++ b/pandas/tseries/tests/test_period.py
@@ -24,7 +24,7 @@
 from numpy.random import randn
 from pandas.compat import range, lrange, lmap, zip
 
-from pandas import Series, TimeSeries, DataFrame, _np_version_under1p9
+from pandas import Series, DataFrame, _np_version_under1p9
 from pandas import tslib
 from pandas.util.testing import(assert_series_equal, assert_almost_equal,
                                 assertRaisesRegexp)
@@ -1191,7 +1191,7 @@ def test_hash_error(self):
     def test_make_time_series(self):
         index = PeriodIndex(freq='A', start='1/1/2001', end='12/1/2009')
         series = Series(1, index=index)
-        tm.assertIsInstance(series, TimeSeries)
+        tm.assertIsInstance(series, Series)
 
     def test_astype(self):
         idx = period_range('1990', '2009', freq='A')
diff --git a/pandas/tseries/tests/test_resample.py b/pandas/tseries/tests/test_resample.py
index 4b3085dc8259f..7dafc88bf9239 100644
--- a/pandas/tseries/tests/test_resample.py
+++ b/pandas/tseries/tests/test_resample.py
@@ -980,7 +980,7 @@ def _simple_ts(start, end, freq='D'):
 
 def _simple_pts(start, end, freq='D'):
     rng = period_range(start, end, freq=freq)
-    return TimeSeries(np.random.randn(len(rng)), index=rng)
+    return Series(np.random.randn(len(rng)), index=rng)
 
 
 class TestResamplePeriodIndex(tm.TestCase):
@@ -1177,7 +1177,7 @@ def test_resample_to_quarterly(self):
     def test_resample_fill_missing(self):
         rng = PeriodIndex([2000, 2005, 2007, 2009], freq='A')
 
-        s = TimeSeries(np.random.randn(4), index=rng)
+        s = Series(np.random.randn(4), index=rng)
 
         stamps = s.to_timestamp()
 
@@ -1191,12 +1191,12 @@ def test_resample_fill_missing(self):
 
     def test_cant_fill_missing_dups(self):
         rng = PeriodIndex([2000, 2005, 2005, 2007, 2007], freq='A')
-        s = TimeSeries(np.random.randn(5), index=rng)
+        s = Series(np.random.randn(5), index=rng)
         self.assertRaises(Exception, s.resample, 'A')
 
     def test_resample_5minute(self):
         rng = period_range('1/1/2000', '1/5/2000', freq='T')
-        ts = TimeSeries(np.random.randn(len(rng)), index=rng)
+        ts = Series(np.random.randn(len(rng)), index=rng)
 
         result = ts.resample('5min')
         expected = ts.to_timestamp().resample('5min')
@@ -1402,7 +1402,7 @@ def test_evenly_divisible_with_no_extra_bins(self):
               'COOP_DLY_TRN_QT': 30, 'COOP_DLY_SLS_AMT': 20}] * 28 +
             [{'REST_KEY': 2, 'DLY_TRN_QT': 70, 'DLY_SLS_AMT': 10,
               'COOP_DLY_TRN_QT': 50, 'COOP_DLY_SLS_AMT': 20}] * 28,
-            index=index.append(index)).sort()
+            index=index.append(index)).sort_index()
 
         index = date_range('2001-5-4',periods=4,freq='7D')
         expected = DataFrame(
@@ -1430,7 +1430,7 @@ def test_apply(self):
 
         grouped = self.ts.groupby(grouper)
 
-        f = lambda x: x.order()[-3:]
+        f = lambda x: x.sort_values()[-3:]
 
         applied = grouped.apply(f)
         expected = self.ts.groupby(lambda x: x.year).apply(f)
diff --git a/pandas/tseries/tests/test_timeseries.py b/pandas/tseries/tests/test_timeseries.py
index e02973136863d..f416a8939ac82 100644
--- a/pandas/tseries/tests/test_timeseries.py
+++ b/pandas/tseries/tests/test_timeseries.py
@@ -9,7 +9,7 @@
 import numpy as np
 randn = np.random.randn
 
-from pandas import (Index, Series, TimeSeries, DataFrame,
+from pandas import (Index, Series, DataFrame,
                     isnull, date_range, Timestamp, Period, DatetimeIndex,
                     Int64Index, to_datetime, bdate_range, Float64Index, TimedeltaIndex, NaT)
 
@@ -60,7 +60,7 @@ def setUp(self):
         self.dups = Series(np.random.randn(len(dates)), index=dates)
 
     def test_constructor(self):
-        tm.assertIsInstance(self.dups, TimeSeries)
+        tm.assertIsInstance(self.dups, Series)
         tm.assertIsInstance(self.dups.index, DatetimeIndex)
 
     def test_is_unique_monotonic(self):
diff --git a/pandas/tseries/tests/test_timeseries_legacy.py b/pandas/tseries/tests/test_timeseries_legacy.py
index 6889f8e2afbb2..4cbc171364ee6 100644
--- a/pandas/tseries/tests/test_timeseries_legacy.py
+++ b/pandas/tseries/tests/test_timeseries_legacy.py
@@ -8,7 +8,7 @@
 import numpy as np
 randn = np.random.randn
 
-from pandas import (Index, Series, TimeSeries, DataFrame,
+from pandas import (Index, Series, DataFrame,
                     isnull, date_range, Timestamp, DatetimeIndex,
                     Int64Index, to_datetime, bdate_range)
 
diff --git a/pandas/tseries/util.py b/pandas/tseries/util.py
index 6c534de0a7aaa..4f29b2bf31f83 100644
--- a/pandas/tseries/util.py
+++ b/pandas/tseries/util.py
@@ -28,7 +28,7 @@ def pivot_annual(series, freq=None):
 
     Parameters
     ----------
-    series : TimeSeries
+    series : Series
     freq : string or None, default None
 
     Returns