diff --git a/doc/source/whatsnew/v0.23.0.txt b/doc/source/whatsnew/v0.23.0.txt
index 1890636bc8e1a..4e59f2d0f844a 100644
--- a/doc/source/whatsnew/v0.23.0.txt
+++ b/doc/source/whatsnew/v0.23.0.txt
@@ -329,7 +329,7 @@ Deprecations
 - :func:`read_excel` has deprecated the ``skip_footer`` parameter. Use ``skipfooter`` instead (:issue:`18836`)
 - The ``is_copy`` attribute is deprecated and will be removed in a future version (:issue:`18801`).
 - ``IntervalIndex.from_intervals`` is deprecated in favor of the :class:`IntervalIndex` constructor (:issue:`19263`)
-
+- :func:``DataFrame.from_items`` is deprecated. Use :func:``DataFrame.from_dict()`` instead, or :func:``DataFrame.from_dict(OrderedDict())`` if you wish to preserve the key order (:issue:`17320`)
 
 .. _whatsnew_0230.prior_deprecations:
 
diff --git a/pandas/core/frame.py b/pandas/core/frame.py
index 788b236b0ec59..96d28581cfdd9 100644
--- a/pandas/core/frame.py
+++ b/pandas/core/frame.py
@@ -313,7 +313,7 @@ def _constructor(self):
 
     _constructor_sliced = Series
     _deprecations = NDFrame._deprecations | frozenset(
-        ['sortlevel', 'get_value', 'set_value', 'from_csv'])
+        ['sortlevel', 'get_value', 'set_value', 'from_csv', 'from_items'])
 
     @property
     def _constructor_expanddim(self):
@@ -1246,6 +1246,12 @@ def to_records(self, index=True, convert_datetime64=True):
     @classmethod
     def from_items(cls, items, columns=None, orient='columns'):
         """
+        .. deprecated:: 0.23.0
+            from_items is deprecated and will be removed in a
+            future version. Use :meth:`DataFrame.from_dict(dict())`
+            instead. :meth:`DataFrame.from_dict(OrderedDict(...))` may be used
+            to preserve the key order.
+
         Convert (key, value) pairs to DataFrame. The keys will be the axis
         index (usually the columns, but depends on the specified
         orientation). The values should be arrays or Series.
@@ -1266,6 +1272,13 @@ def from_items(cls, items, columns=None, orient='columns'):
         -------
         frame : DataFrame
         """
+
+        warnings.warn("from_items is deprecated. Please use "
+                      "DataFrame.from_dict(dict()) instead. "
+                      "DataFrame.from_dict(OrderedDict()) may be used to "
+                      "preserve the key order.",
+                      FutureWarning, stacklevel=2)
+
         keys, values = lzip(*items)
 
         if orient == 'columns':
diff --git a/pandas/io/stata.py b/pandas/io/stata.py
index b409cf20e9a09..0922a4a9c3e9b 100644
--- a/pandas/io/stata.py
+++ b/pandas/io/stata.py
@@ -13,6 +13,7 @@
 import datetime
 import struct
 import sys
+from collections import OrderedDict
 
 import numpy as np
 from dateutil.relativedelta import relativedelta
@@ -1571,7 +1572,7 @@ def read(self, nrows=None, convert_dates=None,
                 else:
                     data_formatted.append((col, data[col]))
         if requires_type_conversion:
-            data = DataFrame.from_items(data_formatted)
+            data = DataFrame.from_dict(OrderedDict(data_formatted))
         del data_formatted
 
         self._do_convert_missing(data, convert_missing)
@@ -1609,7 +1610,7 @@ def read(self, nrows=None, convert_dates=None,
                     convert = True
                 retyped_data.append((col, data[col].astype(dtype)))
             if convert:
-                data = DataFrame.from_items(retyped_data)
+                data = DataFrame.from_dict(OrderedDict(retyped_data))
 
         if index_col is not None:
             data = data.set_index(data.pop(index_col))
@@ -1722,7 +1723,7 @@ def _do_convert_categoricals(self, data, value_label_dict, lbllist,
                 cat_converted_data.append((col, cat_data))
             else:
                 cat_converted_data.append((col, data[col]))
-        data = DataFrame.from_items(cat_converted_data)
+        data = DataFrame.from_dict(OrderedDict(cat_converted_data))
         return data
 
     def data_label(self):
@@ -1997,7 +1998,7 @@ def _prepare_categoricals(self, data):
                 data_formatted.append((col, values))
             else:
                 data_formatted.append((col, data[col]))
-        return DataFrame.from_items(data_formatted)
+        return DataFrame.from_dict(OrderedDict(data_formatted))
 
     def _replace_nans(self, data):
         # return data
diff --git a/pandas/tests/frame/test_constructors.py b/pandas/tests/frame/test_constructors.py
index b24ae22162a34..8abd88d8a379c 100644
--- a/pandas/tests/frame/test_constructors.py
+++ b/pandas/tests/frame/test_constructors.py
@@ -871,7 +871,7 @@ def __len__(self, n):
         # GH 4297
         # support Array
         import array
-        result = DataFrame.from_items([('A', array.array('i', range(10)))])
+        result = DataFrame({'A': array.array('i', range(10))})
         expected = DataFrame({'A': list(range(10))})
         tm.assert_frame_equal(result, expected, check_dtype=False)
 
@@ -1175,28 +1175,35 @@ def test_constructor_manager_resize(self):
 
     def test_constructor_from_items(self):
         items = [(c, self.frame[c]) for c in self.frame.columns]
-        recons = DataFrame.from_items(items)
+        with tm.assert_produces_warning(FutureWarning,
+                                        check_stacklevel=False):
+            recons = DataFrame.from_items(items)
         tm.assert_frame_equal(recons, self.frame)
 
         # pass some columns
-        recons = DataFrame.from_items(items, columns=['C', 'B', 'A'])
+        with tm.assert_produces_warning(FutureWarning,
+                                        check_stacklevel=False):
+            recons = DataFrame.from_items(items, columns=['C', 'B', 'A'])
         tm.assert_frame_equal(recons, self.frame.loc[:, ['C', 'B', 'A']])
 
         # orient='index'
 
         row_items = [(idx, self.mixed_frame.xs(idx))
                      for idx in self.mixed_frame.index]
-
-        recons = DataFrame.from_items(row_items,
-                                      columns=self.mixed_frame.columns,
-                                      orient='index')
+        with tm.assert_produces_warning(FutureWarning,
+                                        check_stacklevel=False):
+            recons = DataFrame.from_items(row_items,
+                                          columns=self.mixed_frame.columns,
+                                          orient='index')
         tm.assert_frame_equal(recons, self.mixed_frame)
         assert recons['A'].dtype == np.float64
 
         with tm.assert_raises_regex(TypeError,
                                     "Must pass columns with "
                                     "orient='index'"):
-            DataFrame.from_items(row_items, orient='index')
+            with tm.assert_produces_warning(FutureWarning,
+                                            check_stacklevel=False):
+                DataFrame.from_items(row_items, orient='index')
 
         # orient='index', but thar be tuples
         arr = construct_1d_object_array_from_listlike(
@@ -1204,15 +1211,19 @@ def test_constructor_from_items(self):
         self.mixed_frame['foo'] = arr
         row_items = [(idx, list(self.mixed_frame.xs(idx)))
                      for idx in self.mixed_frame.index]
-        recons = DataFrame.from_items(row_items,
-                                      columns=self.mixed_frame.columns,
-                                      orient='index')
+        with tm.assert_produces_warning(FutureWarning,
+                                        check_stacklevel=False):
+            recons = DataFrame.from_items(row_items,
+                                          columns=self.mixed_frame.columns,
+                                          orient='index')
         tm.assert_frame_equal(recons, self.mixed_frame)
         assert isinstance(recons['foo'][0], tuple)
 
-        rs = DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])],
-                                  orient='index',
-                                  columns=['one', 'two', 'three'])
+        with tm.assert_produces_warning(FutureWarning,
+                                        check_stacklevel=False):
+            rs = DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])],
+                                      orient='index',
+                                      columns=['one', 'two', 'three'])
         xp = DataFrame([[1, 2, 3], [4, 5, 6]], index=['A', 'B'],
                        columns=['one', 'two', 'three'])
         tm.assert_frame_equal(rs, xp)
@@ -1222,12 +1233,28 @@ def test_constructor_from_items_scalars(self):
         with tm.assert_raises_regex(ValueError,
                                     r'The value in each \(key, value\) '
                                     'pair must be an array, Series, or dict'):
-            DataFrame.from_items([('A', 1), ('B', 4)])
+            with tm.assert_produces_warning(FutureWarning,
+                                            check_stacklevel=False):
+                DataFrame.from_items([('A', 1), ('B', 4)])
 
         with tm.assert_raises_regex(ValueError,
                                     r'The value in each \(key, value\) '
                                     'pair must be an array, Series, or dict'):
-            DataFrame.from_items([('A', 1), ('B', 2)], columns=['col1'],
+            with tm.assert_produces_warning(FutureWarning,
+                                            check_stacklevel=False):
+                DataFrame.from_items([('A', 1), ('B', 2)], columns=['col1'],
+                                     orient='index')
+
+    def test_from_items_deprecation(self):
+        # GH 17320
+        with tm.assert_produces_warning(FutureWarning,
+                                        check_stacklevel=False):
+            DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])])
+
+        with tm.assert_produces_warning(FutureWarning,
+                                        check_stacklevel=False):
+            DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])],
+                                 columns=['col1', 'col2', 'col3'],
                                  orient='index')
 
     def test_constructor_mix_series_nonseries(self):
@@ -1256,13 +1283,13 @@ def test_constructor_column_duplicates(self):
 
         tm.assert_frame_equal(df, edf)
 
-        idf = DataFrame.from_items(
-            [('a', [8]), ('a', [5])], columns=['a', 'a'])
+        idf = DataFrame.from_records([(8, 5)],
+                                     columns=['a', 'a'])
+
         tm.assert_frame_equal(idf, edf)
 
-        pytest.raises(ValueError, DataFrame.from_items,
-                      [('a', [8]), ('a', [5]), ('b', [6])],
-                      columns=['b', 'a', 'a'])
+        pytest.raises(ValueError, DataFrame.from_dict,
+                      OrderedDict([('b', 8), ('a', 5), ('a', 6)]))
 
     def test_constructor_empty_with_string_dtype(self):
         # GH 9428
diff --git a/pandas/tests/frame/test_nonunique_indexes.py b/pandas/tests/frame/test_nonunique_indexes.py
index f0a21cde4fbd9..36465db78361f 100644
--- a/pandas/tests/frame/test_nonunique_indexes.py
+++ b/pandas/tests/frame/test_nonunique_indexes.py
@@ -214,9 +214,10 @@ def check(result, expected=None):
         for index in [df.index, pd.Index(list('edcba'))]:
             this_df = df.copy()
             expected_ser = pd.Series(index.values, index=this_df.index)
-            expected_df = DataFrame.from_items([('A', expected_ser),
-                                                ('B', this_df['B']),
-                                                ('A', expected_ser)])
+            expected_df = DataFrame({'A': expected_ser,
+                                     'B': this_df['B'],
+                                     'A': expected_ser},
+                                    columns=['A', 'B', 'A'])
             this_df['A'] = index
             check(this_df, expected_df)
 
diff --git a/pandas/tests/io/parser/common.py b/pandas/tests/io/parser/common.py
index 8525cb42c2455..f677b356a77a5 100644
--- a/pandas/tests/io/parser/common.py
+++ b/pandas/tests/io/parser/common.py
@@ -8,6 +8,7 @@
 import re
 import sys
 from datetime import datetime
+from collections import OrderedDict
 
 import pytest
 import numpy as np
@@ -924,8 +925,9 @@ def test_float_parser(self):
 
     def test_scientific_no_exponent(self):
         # see gh-12215
-        df = DataFrame.from_items([('w', ['2e']), ('x', ['3E']),
-                                   ('y', ['42e']), ('z', ['632E'])])
+        df = DataFrame.from_dict(OrderedDict([('w', ['2e']), ('x', ['3E']),
+                                              ('y', ['42e']),
+                                              ('z', ['632E'])]))
         data = df.to_csv(index=False)
         for prec in self.float_precision_choices:
             df_roundtrip = self.read_csv(
diff --git a/pandas/tests/io/test_excel.py b/pandas/tests/io/test_excel.py
index efbabcfd8fc4c..ebb8424b78ed4 100644
--- a/pandas/tests/io/test_excel.py
+++ b/pandas/tests/io/test_excel.py
@@ -6,6 +6,7 @@
 from distutils.version import LooseVersion
 from functools import partial
 from warnings import catch_warnings
+from collections import OrderedDict
 
 import numpy as np
 import pytest
@@ -315,7 +316,7 @@ def test_excel_table(self):
 
     def test_reader_special_dtypes(self):
 
-        expected = DataFrame.from_items([
+        expected = DataFrame.from_dict(OrderedDict([
             ("IntCol", [1, 2, -3, 4, 0]),
             ("FloatCol", [1.25, 2.25, 1.83, 1.92, 0.0000000005]),
             ("BoolCol", [True, False, True, True, False]),
@@ -325,8 +326,7 @@ def test_reader_special_dtypes(self):
             ("DateCol", [datetime(2013, 10, 30), datetime(2013, 10, 31),
                          datetime(1905, 1, 1), datetime(2013, 12, 14),
                          datetime(2015, 3, 14)])
-        ])
-
+        ]))
         basename = 'test_types'
 
         # should read in correctly and infer types
@@ -363,12 +363,12 @@ def test_reader_converters(self):
 
         basename = 'test_converters'
 
-        expected = DataFrame.from_items([
+        expected = DataFrame.from_dict(OrderedDict([
             ("IntCol", [1, 2, -3, -1000, 0]),
             ("FloatCol", [12.5, np.nan, 18.3, 19.2, 0.000000005]),
             ("BoolCol", ['Found', 'Found', 'Found', 'Not found', 'Found']),
             ("StrCol", ['1', np.nan, '3', '4', '5']),
-        ])
+        ]))
 
         converters = {'IntCol': lambda x: int(x) if x != '' else -1000,
                       'FloatCol': lambda x: 10 * x if x else np.nan,
@@ -718,32 +718,30 @@ def test_reader_seconds(self):
 
         if LooseVersion(xlrd.__VERSION__) >= LooseVersion("0.9.3"):
             # Xlrd >= 0.9.3 can handle Excel milliseconds.
-            expected = DataFrame.from_items([("Time",
-                                              [time(1, 2, 3),
-                                               time(2, 45, 56, 100000),
-                                               time(4, 29, 49, 200000),
-                                               time(6, 13, 42, 300000),
-                                               time(7, 57, 35, 400000),
-                                               time(9, 41, 28, 500000),
-                                               time(11, 25, 21, 600000),
-                                               time(13, 9, 14, 700000),
-                                               time(14, 53, 7, 800000),
-                                               time(16, 37, 0, 900000),
-                                               time(18, 20, 54)])])
+            expected = DataFrame.from_dict({"Time": [time(1, 2, 3),
+                                            time(2, 45, 56, 100000),
+                                            time(4, 29, 49, 200000),
+                                            time(6, 13, 42, 300000),
+                                            time(7, 57, 35, 400000),
+                                            time(9, 41, 28, 500000),
+                                            time(11, 25, 21, 600000),
+                                            time(13, 9, 14, 700000),
+                                            time(14, 53, 7, 800000),
+                                            time(16, 37, 0, 900000),
+                                            time(18, 20, 54)]})
         else:
             # Xlrd < 0.9.3 rounds Excel milliseconds.
-            expected = DataFrame.from_items([("Time",
-                                              [time(1, 2, 3),
-                                               time(2, 45, 56),
-                                               time(4, 29, 49),
-                                               time(6, 13, 42),
-                                               time(7, 57, 35),
-                                               time(9, 41, 29),
-                                               time(11, 25, 22),
-                                               time(13, 9, 15),
-                                               time(14, 53, 8),
-                                               time(16, 37, 1),
-                                               time(18, 20, 54)])])
+            expected = DataFrame.from_dict({"Time": [time(1, 2, 3),
+                                            time(2, 45, 56),
+                                            time(4, 29, 49),
+                                            time(6, 13, 42),
+                                            time(7, 57, 35),
+                                            time(9, 41, 29),
+                                            time(11, 25, 22),
+                                            time(13, 9, 15),
+                                            time(14, 53, 8),
+                                            time(16, 37, 1),
+                                            time(18, 20, 54)]})
 
         actual = self.get_exceldf('times_1900', 'Sheet1')
         tm.assert_frame_equal(actual, expected)
@@ -1988,7 +1986,7 @@ def test_datetimes(self):
                      datetime(2013, 1, 13, 18, 20, 52)]
 
         with ensure_clean(self.ext) as path:
-            write_frame = DataFrame.from_items([('A', datetimes)])
+            write_frame = DataFrame({'A': datetimes})
             write_frame.to_excel(path, 'Sheet1')
             read_frame = read_excel(path, 'Sheet1', header=0)
 
diff --git a/pandas/tests/io/test_stata.py b/pandas/tests/io/test_stata.py
index d0d7f881b37d0..89d76061329a3 100644
--- a/pandas/tests/io/test_stata.py
+++ b/pandas/tests/io/test_stata.py
@@ -8,6 +8,7 @@
 import warnings
 from datetime import datetime
 from distutils.version import LooseVersion
+from collections import OrderedDict
 
 import numpy as np
 import pandas as pd
@@ -945,7 +946,7 @@ def test_categorical_order(self, file):
                 cols.append((col, pd.Categorical.from_codes(codes, labels)))
             else:
                 cols.append((col, pd.Series(labels, dtype=np.float32)))
-        expected = DataFrame.from_items(cols)
+        expected = DataFrame.from_dict(OrderedDict(cols))
 
         # Read with and with out categoricals, ensure order is identical
         file = getattr(self, file)