Skip to content

Commit 7e47f7a

Browse files
Rojan ShresthaRojan Shrestha
authored andcommitted
updated docstring for pm.MatrixNormal-after review
1 parent c219a4a commit 7e47f7a

File tree

1 file changed

+24
-24
lines changed

1 file changed

+24
-24
lines changed

pymc/distributions/multivariate.py

Lines changed: 24 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -1792,7 +1792,7 @@ class MatrixNormal(Continuous):
17921792
--------
17931793
Define a matrixvariate normal variable for given row and column covariance
17941794
matrices::
1795-
1795+
with pm.Model() as model:
17961796
colcov = np.array([[1.0, 0.5], [0.5, 2]])
17971797
rowcov = np.array([[1, 0, 0], [0, 4, 0], [0, 0, 16]])
17981798
m = rowcov.shape[0]
@@ -1811,29 +1811,29 @@ class MatrixNormal(Continuous):
18111811
18121812
.. code:: python
18131813
1814-
# Setup data
1815-
true_colcov = np.array([[1.0, 0.5, 0.1],
1816-
[0.5, 1.0, 0.2],
1817-
[0.1, 0.2, 1.0]])
1818-
m = 3
1819-
n = true_colcov.shape[0]
1820-
true_scale = 3
1821-
true_rowcov = np.diag([true_scale**(2*i) for i in range(m)])
1822-
mu = np.zeros((m, n))
1823-
true_kron = np.kron(true_rowcov, true_colcov)
1824-
data = np.random.multivariate_normal(mu.flatten(), true_kron)
1825-
data = data.reshape(m, n)
1826-
1827-
with pm.Model() as model:
1828-
# Setup right cholesky matrix
1829-
sd_dist = pm.HalfCauchy.dist(beta=2.5, shape=3)
1830-
colchol,_,_ = pm.LKJCholeskyCov('colchol', n=3, eta=2,sd_dist=sd_dist)
1831-
# Setup left covariance matrix
1832-
scale = pm.LogNormal('scale', mu=np.log(true_scale), sigma=0.5)
1833-
rowcov = pt.diag([scale**(2*i) for i in range(m)])
1834-
1835-
vals = pm.MatrixNormal('vals', mu=mu, colchol=colchol, rowcov=rowcov,
1836-
observed=data)
1814+
# Setup data
1815+
true_colcov = np.array([[1.0, 0.5, 0.1],
1816+
[0.5, 1.0, 0.2],
1817+
[0.1, 0.2, 1.0]])
1818+
m = 3
1819+
n = true_colcov.shape[0]
1820+
true_scale = 3
1821+
true_rowcov = np.diag([true_scale**(2*i) for i in range(m)])
1822+
mu = np.zeros((m, n))
1823+
true_kron = np.kron(true_rowcov, true_colcov)
1824+
data = np.random.multivariate_normal(mu.flatten(), true_kron)
1825+
data = data.reshape(m, n)
1826+
1827+
with pm.Model() as model:
1828+
# Setup right cholesky matrix
1829+
sd_dist = pm.HalfCauchy.dist(beta=2.5, shape=3)
1830+
colchol,_,_ = pm.LKJCholeskyCov('colchol', n=3, eta=2,sd_dist=sd_dist)
1831+
# Setup left covariance matrix
1832+
scale = pm.LogNormal('scale', mu=np.log(true_scale), sigma=0.5)
1833+
rowcov = pt.diag([scale**(2*i) for i in range(m)])
1834+
1835+
vals = pm.MatrixNormal('vals', mu=mu, colchol=colchol, rowcov=rowcov,
1836+
observed=data)
18371837
"""
18381838

18391839
rv_op = matrixnormal

0 commit comments

Comments
 (0)