|
| 1 | +# coverage: ignore |
| 2 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 3 | +# you may not use this file except in compliance with the License. |
| 4 | +# You may obtain a copy of the License at |
| 5 | +# |
| 6 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 7 | +# |
| 8 | +# Unless required by applicable law or agreed to in writing, software |
| 9 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 10 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 11 | +# See the License for the specific language governing permissions and |
| 12 | +# limitations under the License. |
| 13 | +import itertools |
| 14 | +from typing import Tuple |
| 15 | +import numpy as np |
| 16 | +import numpy.typing as npt |
| 17 | + |
| 18 | +from pyscf.pbc import scf |
| 19 | + |
| 20 | +from openfermion.resource_estimates.pbc.utils.hamiltonian_utils import ( |
| 21 | + build_momentum_transfer_mapping,) |
| 22 | + |
| 23 | + |
| 24 | +def get_df_factor(mat: npt.NDArray, thresh: float, verify_adjoint: bool = False |
| 25 | + ) -> Tuple[npt.NDArray, npt.NDArray]: |
| 26 | + """Represent a matrix via non-zero eigenvalue vector pairs. |
| 27 | + anything above thresh is considered non-zero |
| 28 | +
|
| 29 | + Args: |
| 30 | + mat: Matrix to double factorize. |
| 31 | + thresh: Double factorization eigenvalue threshold |
| 32 | + verify_adjoint: Verify input matrix is Hermitian (Default value = False) |
| 33 | +
|
| 34 | + Returns: |
| 35 | + Tuple eigen values and eigen vectors (lambda, V) |
| 36 | +
|
| 37 | + """ |
| 38 | + if verify_adjoint: |
| 39 | + assert np.allclose(mat, mat.conj().T) |
| 40 | + eigs, eigv = np.linalg.eigh(mat) |
| 41 | + normSC = np.sum(np.abs(eigs)) |
| 42 | + ix = np.argsort(np.abs(eigs))[::-1] |
| 43 | + eigs = eigs[ix] |
| 44 | + eigv = eigv[:, ix] |
| 45 | + truncation = normSC * np.abs(eigs) |
| 46 | + to_zero = truncation < thresh |
| 47 | + eigs[to_zero] = 0.0 |
| 48 | + eigv[:, to_zero] = 0.0 |
| 49 | + idx_not_zero = np.where(~to_zero == True)[0] |
| 50 | + eigs = eigs[idx_not_zero] |
| 51 | + eigv = eigv[:, idx_not_zero] |
| 52 | + return eigs, eigv |
| 53 | + |
| 54 | + |
| 55 | +class DFABKpointIntegrals: |
| 56 | + |
| 57 | + def __init__(self, cholesky_factor: npt.NDArray, kmf: scf.HF): |
| 58 | + """Initialize a ERI object for CCSD from Cholesky factors and a |
| 59 | + pyscf mean-field object |
| 60 | +
|
| 61 | + We need to form the A and B objects which are indexed by Cholesky index |
| 62 | + n and momentum mode Q. This is accomplished by constructing rho[Q, n, |
| 63 | + kpt, nao, nao] by reshaping the cholesky object. We don't form the |
| 64 | + matrix |
| 65 | +
|
| 66 | + Args: |
| 67 | + cholesky_factor: Cholesky factor tensor that is |
| 68 | + [nkpts, nkpts, naux, nao, nao] |
| 69 | + kmf: pyscf k-object. Currently only used to obtain the number of |
| 70 | + k-points. must have an attribute kpts which len(self.kmf.kpts) |
| 71 | + returns number of kpts. |
| 72 | + """ |
| 73 | + self.chol = cholesky_factor |
| 74 | + self.kmf = kmf |
| 75 | + self.nk = len(self.kmf.kpts) |
| 76 | + naux = 0 |
| 77 | + for i, j in itertools.product(range(self.nk), repeat=2): |
| 78 | + naux = max(self.chol[i, j].shape[0], naux) |
| 79 | + self.naux = naux |
| 80 | + self.nao = cholesky_factor[0, 0].shape[-1] |
| 81 | + k_transfer_map = build_momentum_transfer_mapping( |
| 82 | + self.kmf.cell, self.kmf.kpts) |
| 83 | + self.k_transfer_map = k_transfer_map |
| 84 | + self.reverse_k_transfer_map = np.zeros_like( |
| 85 | + self.k_transfer_map) # [kidx, kmq_idx] = qidx |
| 86 | + for kidx in range(self.nk): |
| 87 | + for qidx in range(self.nk): |
| 88 | + kmq_idx = self.k_transfer_map[qidx, kidx] |
| 89 | + self.reverse_k_transfer_map[kidx, kmq_idx] = qidx |
| 90 | + |
| 91 | + # set up for later when we construct DF |
| 92 | + self.df_factors = None |
| 93 | + self.a_mats = None |
| 94 | + self.b_mats = None |
| 95 | + |
| 96 | + def build_A_B_n_q_k_from_chol(self, qidx, kidx): |
| 97 | + """Builds matrices that are block in two momentum indices |
| 98 | +
|
| 99 | + k | k-Q | |
| 100 | + ------------ |
| 101 | + k | | | |
| 102 | + ---------------- |
| 103 | + k-Q | | | |
| 104 | + ---------------- |
| 105 | +
|
| 106 | + where the off diagonal blocks are the ones that are populated. All |
| 107 | + matrices for every Cholesky vector is constructed. |
| 108 | +
|
| 109 | + Args: |
| 110 | + qidx: index for momentum mode Q. |
| 111 | + kidx: index for momentum mode K. |
| 112 | +
|
| 113 | + Returns: |
| 114 | + Amat: A matrix |
| 115 | + Bmat: A matrix |
| 116 | + """ |
| 117 | + k_minus_q_idx = self.k_transfer_map[qidx, kidx] |
| 118 | + naux = self.chol[kidx, k_minus_q_idx].shape[0] |
| 119 | + nmo = self.nao |
| 120 | + Amat = np.zeros((naux, 2 * nmo, 2 * nmo), dtype=np.complex128) |
| 121 | + Bmat = np.zeros((naux, 2 * nmo, 2 * nmo), dtype=np.complex128) |
| 122 | + if k_minus_q_idx == kidx: |
| 123 | + Amat[:, :nmo, :nmo] = self.chol[ |
| 124 | + kidx, k_minus_q_idx] # beacuse L_{pK, qK,n}= L_{qK,pK,n}^{*} |
| 125 | + Bmat[:, :nmo, :nmo] = 0.5j * ( |
| 126 | + self.chol[kidx, k_minus_q_idx] - |
| 127 | + self.chol[kidx, k_minus_q_idx].conj().transpose(0, 2, 1)) |
| 128 | + else: |
| 129 | + Amat[:, :nmo, nmo:] = (0.5 * self.chol[kidx, k_minus_q_idx] |
| 130 | + ) # [naux, nmo, nmo] |
| 131 | + Amat[:, nmo:, :nmo] = 0.5 * self.chol[kidx, k_minus_q_idx].conj( |
| 132 | + ).transpose(0, 2, 1) |
| 133 | + |
| 134 | + Bmat[:, :nmo, nmo:] = (0.5j * self.chol[kidx, k_minus_q_idx] |
| 135 | + ) # [naux, nmo, nmo] |
| 136 | + Bmat[:, nmo:, :nmo] = -0.5j * self.chol[kidx, k_minus_q_idx].conj( |
| 137 | + ).transpose(0, 2, 1) |
| 138 | + |
| 139 | + return Amat, Bmat |
| 140 | + |
| 141 | + def build_chol_part_from_A_B( |
| 142 | + self, |
| 143 | + kidx: int, |
| 144 | + qidx: int, |
| 145 | + Amats: npt.NDArray, |
| 146 | + Bmats: npt.NDArray, |
| 147 | + ) -> npt.NDArray: |
| 148 | + """Construct rho_{n, k, Q} which is equal to the cholesky factor by |
| 149 | + summing together via the following relationships |
| 150 | +
|
| 151 | + Args: |
| 152 | + kidx: k-momentum index |
| 153 | + qidx: Q-momentum index |
| 154 | + Amats: naux, 2 * nmo, 2 * nmo] |
| 155 | + Bmats: naux, 2 * nmo, 2 * nmo] |
| 156 | +
|
| 157 | + Returns: |
| 158 | + cholesky factors 3-tensors (k, k-Q)[naux, nao, nao], |
| 159 | + (kp, kp-Q)[naux, nao, nao] |
| 160 | +
|
| 161 | + """ |
| 162 | + k_minus_q_idx = self.k_transfer_map[qidx, kidx] |
| 163 | + nmo = self.nao |
| 164 | + if k_minus_q_idx == kidx: |
| 165 | + return Amats[:, :nmo, :nmo] |
| 166 | + else: |
| 167 | + return Amats[:, :nmo, nmo:] + -1j * Bmats[:, :nmo, nmo:] |
| 168 | + |
| 169 | + def double_factorize(self, thresh=None) -> None: |
| 170 | + """construct a double factorization of the Hamiltonian. |
| 171 | +
|
| 172 | + Iterate through qidx, kidx and get factorized Amat and Bmat for each |
| 173 | + Cholesky rank |
| 174 | +
|
| 175 | + Args: |
| 176 | + thresh: Double factorization eigenvalue threshold |
| 177 | + (Default value = None) |
| 178 | + """ |
| 179 | + if thresh is None: |
| 180 | + thresh = 1.0e-13 |
| 181 | + if self.df_factors is not None: |
| 182 | + return self.df_factors |
| 183 | + |
| 184 | + nkpts = self.nk |
| 185 | + nmo = self.nao |
| 186 | + naux = self.naux |
| 187 | + self.amat_n_mats = np.zeros((nkpts, nkpts, naux, 2 * nmo, 2 * nmo), |
| 188 | + dtype=np.complex128) |
| 189 | + self.bmat_n_mats = np.zeros((nkpts, nkpts, naux, 2 * nmo, 2 * nmo), |
| 190 | + dtype=np.complex128) |
| 191 | + self.amat_lambda_vecs = np.empty((nkpts, nkpts, naux), dtype=object) |
| 192 | + self.bmat_lambda_vecs = np.empty((nkpts, nkpts, naux), dtype=object) |
| 193 | + for qidx, kidx in itertools.product(range(nkpts), repeat=2): |
| 194 | + Amats, Bmats = self.build_A_B_n_q_k_from_chol(qidx, kidx) |
| 195 | + naux_qk = Amats.shape[0] |
| 196 | + assert naux_qk <= naux |
| 197 | + for nc in range(naux_qk): |
| 198 | + amat_n_eigs, amat_n_eigv = get_df_factor(Amats[nc], thresh) |
| 199 | + self.amat_n_mats[kidx, qidx][nc, :, :] = ( |
| 200 | + amat_n_eigv @ np.diag(amat_n_eigs) @ amat_n_eigv.conj().T) |
| 201 | + self.amat_lambda_vecs[kidx, qidx, nc] = amat_n_eigs |
| 202 | + |
| 203 | + bmat_n_eigs, bmat_n_eigv = get_df_factor(Bmats[nc], thresh) |
| 204 | + self.bmat_n_mats[kidx, qidx][nc, :, :] = ( |
| 205 | + bmat_n_eigv @ np.diag(bmat_n_eigs) @ bmat_n_eigv.conj().T) |
| 206 | + self.bmat_lambda_vecs[kidx, qidx, nc] = bmat_n_eigs |
| 207 | + |
| 208 | + return |
| 209 | + |
| 210 | + def get_eri(self, ikpts: list) -> npt.NDArray: |
| 211 | + """Construct (pkp qkq| rkr sks) via A and B tensors that have already |
| 212 | + been constructed |
| 213 | +
|
| 214 | + Args: |
| 215 | + ikpts: list of four integers representing the index of the kpoint in |
| 216 | + self.kmf.kpts |
| 217 | +
|
| 218 | + Returns: |
| 219 | + eris: ([pkp][qkq]|[rkr][sks]) |
| 220 | + """ |
| 221 | + ikp, ikq, ikr, iks = ikpts # (k, k-q, k'-q, k') |
| 222 | + qidx = self.reverse_k_transfer_map[ikp, ikq] |
| 223 | + test_qidx = self.reverse_k_transfer_map[iks, ikr] |
| 224 | + assert test_qidx == qidx |
| 225 | + |
| 226 | + # build Cholesky vector from truncated A and B |
| 227 | + chol_val_k_kmq = self.build_chol_part_from_A_B( |
| 228 | + ikp, qidx, self.amat_n_mats[ikp, qidx], self.bmat_n_mats[ikp, qidx]) |
| 229 | + chol_val_kp_kpmq = self.build_chol_part_from_A_B( |
| 230 | + iks, qidx, self.amat_n_mats[iks, qidx], self.bmat_n_mats[iks, qidx]) |
| 231 | + |
| 232 | + return np.einsum( |
| 233 | + "npq,nsr->pqrs", |
| 234 | + chol_val_k_kmq, |
| 235 | + chol_val_kp_kpmq.conj(), |
| 236 | + optimize=True, |
| 237 | + ) |
| 238 | + |
| 239 | + def get_eri_exact(self, ikpts: list) -> npt.NDArray: |
| 240 | + """Construct (pkp qkq| rkr sks) exactly from Cholesky vector. This is |
| 241 | + for constructing the J and K like terms needed for the one-body |
| 242 | + component lambda |
| 243 | +
|
| 244 | + Args: |
| 245 | + ikpts: list of four integers representing the index of the kpoint in |
| 246 | + self.kmf.kpts |
| 247 | +
|
| 248 | + Returns: |
| 249 | + eris: ([pkp][qkq]|[rkr][sks]) |
| 250 | + """ |
| 251 | + ikp, ikq, ikr, iks = ikpts |
| 252 | + return np.einsum( |
| 253 | + "npq,nsr->pqrs", |
| 254 | + self.chol[ikp, ikq], |
| 255 | + self.chol[iks, ikr].conj(), |
| 256 | + optimize=True, |
| 257 | + ) |
0 commit comments