Discover airdrops and early crypto startups before they go viral using advanced AI semantic analysis powered by Grok API.
pip install -r requirements.txt# Create config directory
mkdir -p config data/results logs
# Copy and edit configuration
cp config/settings.yaml.example config/settings.yaml
# Edit settings.yaml with your API keysEdit config/settings.yaml:
grok:
api_key: "your_grok_api_key_here" # Get from https://console.x.ai
twitter: # Optional - uses snscrape if not provided
api_key: "your_x_api_key"
bearer_token: "your_bearer_token"python main.py# Results saved to data/results/
ls data/results/
# View latest opportunities
python -c "
import pandas as pd
df = pd.read_csv('data/results/combined_*.csv')
print(df[df['type'] == 'airdrop'][['project_name', 'confidence', 'chain']].head())
"- Grok API Integration: Deep semantic understanding beyond keywords
- Structured Extraction: Project name, funding, investors, chains
- Confidence Scoring: Filter high-quality opportunities
- Hashtag Tracking:
#airdrop,#funding,#launch, etc. - Influencer Monitoring: VCs, founders, alpha callers
- No API Limits: Uses
snscrapewhen Twitter API unavailable
- Separate Files: Airdrops and startups in different CSVs
- Rich Metadata: Engagement, confidence, author info
- Analytics: Summary reports and trend analysis
python main.pypython main.py --continuousfrom main import XScanner
# Initialize with custom config
scanner = XScanner("path/to/custom/config.yaml")
# Run scan
results = await scanner.scan_and_classify()
# Get analytics
from modules.storage import DataStorage
storage = DataStorage(scanner.config)
analytics = storage.get_analytics(results)
print(f"Found {analytics['airdrops_vs_startups']['airdrops']} airdrops")xscanner/
โโโ main.py # Main orchestrator
โโโ config/
โ โโโ settings.yaml # Configuration file
โโโ modules/
โ โโโ twitter_scraper.py # Tweet collection
โ โโโ grok_classifier.py # AI classification
โ โโโ storage.py # Data export
โโโ data/
โ โโโ influencers.txt # VCs and influencers to monitor
โ โโโ results/ # Output CSV files
โโโ requirements.txt # Dependencies
โโโ README.md # This file
twitter:
hashtags:
- "#airdrop"
- "#funding"
- "#launch"
max_tweets: 200
days_back: 1grok:
api_key: "your_key"
confidence_threshold: 0.6
batch_size: 10storage:
csv_path: "data/results"
keep_files_days: 30
export_formats: ["csv", "json"]| project_name | chain | confidence | website | description | engagement |
|---|---|---|---|---|---|
| LayerZero | Ethereum | 0.85 | layerzero.network | Token distribution campaign | 892 |
| ZkSync Era | Ethereum | 0.78 | zksync.io | Testnet rewards program | 234 |
| project_name | funding_amount | investors | category | confidence | chain |
|---|---|---|---|---|---|
| Polygon Labs | $15M | Sequoia Capital | Infrastructure | 0.92 | Ethereum |
| ChainLink 3.0 | Pre-seed | - | Oracle | 0.81 | Multi-chain |
# Filter high-confidence opportunities
high_conf = [item for item in results if item['confidence'] > 0.8]
# Filter by funding amount
funded = [item for item in results if item.get('funding_amount')]
# Filter by engagement
viral = [item for item in results if item['engagement'] > 500]from modules.storage import DataManager
dm = DataManager()
# Generate weekly report
dm.generate_report(days_back=7)
# Merge historical data
dm.merge_csv_files("airdrops_*.csv", "all_airdrops.csv")
# Clean old files
dm.clean_old_files(days_to_keep=30)- Grok API: Required for AI classification. Get key from https://console.x.ai
- Twitter API: Optional. Uses free
snscrapeif not provided
- Grok API: ~50 requests/minute (check your plan)
- Twitter/snscrape: No official limits, but use responsibly
- Built-in Delays: Automatic rate limiting to avoid blocks
- Only processes public tweets
- No personal data storage
- Respects Twitter's terms of service
- MongoDB storage for better querying
- Notion database sync for organized tracking
- Telegram alerts for high-value opportunities
- Google Sheets export for team collaboration
- Sentiment Analysis for market timing
- Network Analysis to find connected projects
- Price Prediction for airdrop values
- Portfolio Tracking for claimed airdrops
- Web Dashboard for real-time monitoring
- Mobile App for on-the-go alerts
- API Endpoints for third-party integrations
- Machine Learning for improved classification
- Fork the repository
- Create a feature branch:
git checkout -b feature-name - Commit changes:
git commit -am 'Add feature' - Push to branch:
git push origin feature-name - Submit a Pull Request
MIT License - feel free to use for personal or commercial projects.
This tool is for informational purposes only. Always do your own research (DYOR) before participating in any airdrops or investing in crypto projects. The authors are not responsible for any financial losses.
Happy Hunting! ๐ฏ
Find the next big airdrop before it trends