Skip to content

WJPBProjects/GraphNeuralNets

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A repository for investigating graph data with Graph Neural Networks

Note that this is a limited selection of files and notebooks to demonstrate the work, due to size limitations on the original repo

Setup PyTorch using conda

Create and activate a Python 3 conda environment:

conda create -n pymira python=3.8
conda activate pymira

Install PyTorch using conda:

conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=10.2 -c pytorch

remember to check your pytorch, torchvision and cudatoolkit versions are correct before moving on, e.g. for cuda using:

python -c "import torch; print(torch.version.cuda)"

Setup PyTorch using virtualenv

Create and activate a Python 3 virtual environment:

virtualenv -p python3 <path_to_envs>/pymira
source <path_to_envs>/pymira/bin/activate

Install PyTorch using pip:

pip install torch torchvision

Install PyTorch Geometric:

Note that the versions specified in the URLs must match with the versions installed above (e.g. 102 = 10.2 for cuda)

pip install -q torch-scatter -f https://pytorch-geometric.com/whl/torch-1.8.0+cu102.html
pip install -q torch-sparse -f https://pytorch-geometric.com/whl/torch-1.8.0+cu102.html
pip install -q torch-cluster -f https://pytorch-geometric.com/whl/torch-1.8.0+cu102.html
pip install -q torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.8.0+cu102.html   
pip install -q torch-geometric

Install additional Python packages:

pip install matplotlib jupyter pandas seaborn scikit-learn tensorboard cmake openmesh pytorch-lightning

License & Acknowledgements

This project is part of a summer MSc project at Imperial College London. Please contact the author for further details.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published