Skip to content

Rename rval to return_value or run_value #1504

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jun 14, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions autosklearn/automl.py
Original file line number Diff line number Diff line change
Expand Up @@ -2138,10 +2138,10 @@ def has_key(rv, key):
return rv.additional_info and key in rv.additional_info

table_dict = {}
for rkey, rval in self.runhistory_.data.items():
if has_key(rval, "num_run"):
model_id = rval.additional_info["num_run"]
table_dict[model_id] = {"model_id": model_id, "cost": rval.cost}
for run_key, run_val in self.runhistory_.data.items():
if has_key(run_val, "num_run"):
model_id = run_val.additional_info["num_run"]
table_dict[model_id] = {"model_id": model_id, "cost": run_val.cost}

# Checking if the dictionary is empty
if not table_dict:
Expand Down
34 changes: 17 additions & 17 deletions autosklearn/estimators.py
Original file line number Diff line number Diff line change
Expand Up @@ -1041,31 +1041,31 @@ def additional_info_has_key(rv, key):
return rv.additional_info and key in rv.additional_info

model_runs = {}
for rkey, rval in self.automl_.runhistory_.data.items():
if not additional_info_has_key(rval, "num_run"):
for run_key, run_val in self.automl_.runhistory_.data.items():
if not additional_info_has_key(run_val, "num_run"):
continue
else:
model_key = rval.additional_info["num_run"]
model_key = run_val.additional_info["num_run"]
model_run = {
"model_id": rval.additional_info["num_run"],
"seed": rkey.seed,
"budget": rkey.budget,
"duration": rval.time,
"config_id": rkey.config_id,
"start_time": rval.starttime,
"end_time": rval.endtime,
"status": str(rval.status),
"train_loss": rval.additional_info["train_loss"]
if additional_info_has_key(rval, "train_loss")
"model_id": run_val.additional_info["num_run"],
"seed": run_key.seed,
"budget": run_key.budget,
"duration": run_val.time,
"config_id": run_key.config_id,
"start_time": run_val.starttime,
"end_time": run_val.endtime,
"status": str(run_val.status),
"train_loss": run_val.additional_info["train_loss"]
if additional_info_has_key(run_val, "train_loss")
else None,
"config_origin": rval.additional_info["configuration_origin"]
if additional_info_has_key(rval, "configuration_origin")
"config_origin": run_val.additional_info["configuration_origin"]
if additional_info_has_key(run_val, "configuration_origin")
else None,
}
if num_metrics == 1:
model_run["cost"] = rval.cost
model_run["cost"] = run_val.cost
else:
for cost_idx, cost in enumerate(rval.cost):
for cost_idx, cost in enumerate(run_val.cost):
model_run[f"cost_{cost_idx}"] = cost
model_runs[model_key] = model_run

Expand Down
2 changes: 1 addition & 1 deletion autosklearn/evaluation/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,7 @@ def fit_predict_try_except_decorator(
# File "auto-sklearn/autosklearn/evaluation/train_evaluator.py", line 616, in fit_predict_and_loss, # noqa E501
# status=status
# File "auto-sklearn/autosklearn/evaluation/abstract_evaluator.py", line 320, in finish_up # noqa E501
# self.queue.put(rval_dict)
# self.queue.put(return_value_dict)
# File "miniconda/3-4.5.4/envs/autosklearn/lib/python3.7/multiprocessing/queues.py", line 87, in put # noqa E501
# self._start_thread()
# File "miniconda/3-4.5.4/envs/autosklearn/lib/python3.7/multiprocessing/queues.py", line 170, in _start_thread # noqa E501
Expand Down
6 changes: 3 additions & 3 deletions autosklearn/evaluation/abstract_evaluator.py
Original file line number Diff line number Diff line change
Expand Up @@ -429,15 +429,15 @@ def finish_up(
if test_loss is not None:
additional_run_info["test_loss"] = test_loss

rval_dict = {
return_value_dict = {
"loss": loss,
"additional_run_info": additional_run_info,
"status": status,
}
if final_call:
rval_dict["final_queue_element"] = True
return_value_dict["final_queue_element"] = True

self.queue.put(rval_dict)
self.queue.put(return_value_dict)
return self.duration, loss_, self.seed, additional_run_info_

def calculate_auxiliary_losses(
Expand Down
8 changes: 4 additions & 4 deletions autosklearn/evaluation/util.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,19 +12,19 @@ def read_queue(
stack = []
while True:
try:
rval = queue_.get(timeout=1)
return_value = queue_.get(timeout=1)
except queue.Empty:
break

# Check if there is a special placeholder value which tells us that
# we don't have to wait until the queue times out in order to
# retrieve the final value!
if "final_queue_element" in rval:
del rval["final_queue_element"]
if "final_queue_element" in return_value:
del return_value["final_queue_element"]
do_break = True
else:
do_break = False
stack.append(rval)
stack.append(return_value)
if do_break:
break

Expand Down
16 changes: 8 additions & 8 deletions autosklearn/experimental/selector.py
Original file line number Diff line number Diff line change
Expand Up @@ -297,17 +297,17 @@ def _predict(
wins = wins / np.sum(wins)
predictions[X.index[x_idx]] = wins

rval = {
return_value = {
task_id: {
strategy: predictions[task_id][strategy_idx]
for strategy_idx, strategy in enumerate(self.strategies_)
}
for task_id in X.index
}
rval = pd.DataFrame(rval).transpose().astype(float)
rval = rval[self.strategies_]
rval = rval.fillna(0.0)
return rval
return_value = pd.DataFrame(return_value).transpose().astype(float)
return_value = return_value[self.strategies_]
return_value = return_value.fillna(0.0)
return return_value

def fit_pairwise_model(self, X, y, weights, rng, configuration):
raise NotImplementedError()
Expand Down Expand Up @@ -346,14 +346,14 @@ def fit(
) -> None:
self.X_ = X
self.strategies_ = y.columns
self.rval_ = np.array(
self.return_value_ = np.array(
[
(len(self.strategies_) - self.default_strategies.index(strategy) - 1)
/ (len(self.strategies_) - 1)
for strategy in self.strategies_
]
)
self.rval_ = self.rval_ / np.sum(self.rval_)
self.return_value_ = self.return_value_ / np.sum(self.return_value_)
self.selector.fit(X, y, minima, maxima)

def _predict(
Expand All @@ -377,7 +377,7 @@ def _predict(
prediction.loc[task_id] = pd.Series(
{
strategy: value
for strategy, value in zip(self.strategies_, self.rval_)
for strategy, value in zip(self.strategies_, self.return_value_)
}
)

Expand Down
6 changes: 3 additions & 3 deletions autosklearn/metalearning/metalearning/kNearestDatasets/kND.py
Original file line number Diff line number Diff line change
Expand Up @@ -122,17 +122,17 @@ def kNearestDatasets(self, x, k=1, return_distance=False):

assert k == neighbor_indices.shape[1]

rval = [
return_value = [
self.metafeatures.index[i]
# Neighbor indices is 2d, each row is the indices for one
# dataset in x.
for i in neighbor_indices[0]
]

if return_distance is False:
return rval
return return_value
else:
return rval, distances[0]
return return_value, distances[0]

def kBestSuggestions(self, x, k=1, exclude_double_configurations=True):
assert type(x) == pd.Series
Expand Down
6 changes: 3 additions & 3 deletions autosklearn/pipeline/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -495,15 +495,15 @@ def __repr__(self):
dataset_properties_string.append("}")
dataset_properties_string = "".join(dataset_properties_string)

rval = "%s(%s,\n%s)" % (
return_value = "%s(%s,\n%s)" % (
class_name,
configuration,
dataset_properties_string,
)
else:
rval = "%s(%s)" % (class_name, configuration_string)
return_value = "%s(%s)" % (class_name, configuration_string)

return rval
return return_value

def _get_pipeline_steps(self, dataset_properties):
raise NotImplementedError()
Expand Down
4 changes: 2 additions & 2 deletions scripts/2015_nips_paper/run/score_ensemble.py
Original file line number Diff line number Diff line change
Expand Up @@ -227,14 +227,14 @@ def evaluate(input_directory, validation_files, test_files, ensemble_size=50):

ensemble_time = time.time() - start

rval = {
return_value = {
"ensemble_time": ensemble_time,
"time_function_evaluation": time_function_evaluation,
"ensemble_error": ensemble_error,
"ensemble_test_error": ensemble_test_error,
}

return rval
return return_value


if __name__ == "__main__":
Expand Down
38 changes: 19 additions & 19 deletions test/test_evaluation/test_test_evaluator.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,10 +80,10 @@ def test_datasets(self):
)

evaluator.fit_predict_and_loss()
rval = read_queue(evaluator.queue)
self.assertEqual(len(rval), 1)
self.assertEqual(len(rval[0]), 3)
self.assertTrue(np.isfinite(rval[0]["loss"]))
return_value = read_queue(evaluator.queue)
self.assertEqual(len(return_value), 1)
self.assertEqual(len(return_value[0]), 3)
self.assertTrue(np.isfinite(return_value[0]["loss"]))


class FunctionsTest(unittest.TestCase):
Expand Down Expand Up @@ -124,11 +124,11 @@ def test_eval_test(self):
port=self.port,
additional_components=dict(),
)
rval = read_queue(self.queue)
self.assertEqual(len(rval), 1)
self.assertAlmostEqual(rval[0]["loss"], 0.07999999999999996)
self.assertEqual(rval[0]["status"], StatusType.SUCCESS)
self.assertNotIn("bac_metric", rval[0]["additional_run_info"])
return_value = read_queue(self.queue)
self.assertEqual(len(return_value), 1)
self.assertAlmostEqual(return_value[0]["loss"], 0.07999999999999996)
self.assertEqual(return_value[0]["status"], StatusType.SUCCESS)
self.assertNotIn("bac_metric", return_value[0]["additional_run_info"])

def test_eval_test_multi_objective(self):
metrics = {
Expand All @@ -151,12 +151,12 @@ def test_eval_test_multi_objective(self):
port=self.port,
additional_components=dict(),
)
rval = read_queue(self.queue)
self.assertEqual(len(rval), 1)
return_value = read_queue(self.queue)
self.assertEqual(len(return_value), 1)
for metric, loss in metrics.items():
self.assertAlmostEqual(rval[0]["loss"][metric.name], loss)
self.assertEqual(rval[0]["status"], StatusType.SUCCESS)
self.assertNotIn("bac_metric", rval[0]["additional_run_info"])
self.assertAlmostEqual(return_value[0]["loss"][metric.name], loss)
self.assertEqual(return_value[0]["status"], StatusType.SUCCESS)
self.assertNotIn("bac_metric", return_value[0]["additional_run_info"])

def test_eval_test_all_loss_functions(self):
eval_t(
Expand All @@ -175,8 +175,8 @@ def test_eval_test_all_loss_functions(self):
port=self.port,
additional_components=dict(),
)
rval = read_queue(self.queue)
self.assertEqual(len(rval), 1)
return_value = read_queue(self.queue)
self.assertEqual(len(return_value), 1)

# Note: All metric here should be minimized
fixture = {
Expand All @@ -195,7 +195,7 @@ def test_eval_test_all_loss_functions(self):
"num_run": -1,
}

additional_run_info = rval[0]["additional_run_info"]
additional_run_info = return_value[0]["additional_run_info"]
for key, value in fixture.items():
self.assertAlmostEqual(additional_run_info[key], fixture[key], msg=key)
self.assertEqual(
Expand All @@ -204,5 +204,5 @@ def test_eval_test_all_loss_functions(self):
msg=sorted(additional_run_info.items()),
)
self.assertIn("duration", additional_run_info)
self.assertAlmostEqual(rval[0]["loss"], 0.040000000000000036)
self.assertEqual(rval[0]["status"], StatusType.SUCCESS)
self.assertAlmostEqual(return_value[0]["loss"], 0.040000000000000036)
self.assertEqual(return_value[0]["status"], StatusType.SUCCESS)
Loading