-
Notifications
You must be signed in to change notification settings - Fork 14.2k
[MLIR][XeGPU] add blocking support for reduce, broadcast, and transpose #143389
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
Thank you for submitting a Pull Request (PR) to the LLVM Project! This PR will be automatically labeled and the relevant teams will be notified. If you wish to, you can add reviewers by using the "Reviewers" section on this page. If this is not working for you, it is probably because you do not have write permissions for the repository. In which case you can instead tag reviewers by name in a comment by using If you have received no comments on your PR for a week, you can request a review by "ping"ing the PR by adding a comment “Ping”. The common courtesy "ping" rate is once a week. Please remember that you are asking for valuable time from other developers. If you have further questions, they may be answered by the LLVM GitHub User Guide. You can also ask questions in a comment on this PR, on the LLVM Discord or on the forums. |
@llvm/pr-subscribers-mlir-gpu @llvm/pr-subscribers-mlir Author: Jianhui Li (Jianhui-Li) ChangesThis PR adds blocking support for vector dialect operations ( Full diff: https://github.com/llvm/llvm-project/pull/143389.diff 2 Files Affected:
diff --git a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUBlocking.cpp b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUBlocking.cpp
index 7cd998eed2e08..a3826c56e1f62 100644
--- a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUBlocking.cpp
+++ b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUBlocking.cpp
@@ -169,6 +169,12 @@ XeGPUBlockingPass::getTileShape(Operation *op) const {
if (OpTrait::hasElementwiseMappableTraits(op) && op->getNumResults() == 1)
return getTileShape(op->getOpResult(0));
+ if (isa<vector::MultiDimReductionOp>(op))
+ return getTileShape(op->getOpOperand(0));
+
+ if (isa<vector::TransposeOp, vector::BroadcastOp>(op))
+ return getTileShape(op->getOpResult(0));
+
return std::nullopt;
}
diff --git a/mlir/test/Dialect/XeGPU/xegpu-blocking.mlir b/mlir/test/Dialect/XeGPU/xegpu-blocking.mlir
index f9114988686c8..8e3673d04eacb 100644
--- a/mlir/test/Dialect/XeGPU/xegpu-blocking.mlir
+++ b/mlir/test/Dialect/XeGPU/xegpu-blocking.mlir
@@ -246,3 +246,113 @@ gpu.module @test_kernel {
gpu.return
}
}
+
+// -----
+#l = #xegpu.layout<inst_data = [16, 16]>
+#r = #xegpu.layout<inst_data = [16]>
+
+gpu.module @kernel attributes {spirv.target_env = #spirv.target_env<#spirv.vce<v1.4, [Addresses, Float16Buffer, Int64, Int16, Int8, Kernel, Linkage, Vector16, GenericPointer, Groups, Float16, Float64, AtomicFloat32AddEXT, ExpectAssumeKHR, SubgroupDispatch, VectorComputeINTEL, VectorAnyINTEL], [SPV_EXT_shader_atomic_float_add, SPV_KHR_expect_assume, SPV_INTEL_vector_compute]>, api=OpenCL, #spirv.resource_limits<>>} {
+ gpu.func @reduce_dim_0(%a: memref<16x512xf32>, %b: memref<512xf32>) kernel attributes {VectorComputeFunctionINTEL, spirv.entry_point_abi = #spirv.entry_point_abi<>} {
+ %acc = arith.constant dense<0.0> : vector<64xf32>
+ %c64 = arith.constant 64 : index
+ %block_id_x = gpu.block_id x
+ %m = arith.muli %block_id_x, %c64 : index
+ %0 = xegpu.create_nd_tdesc %a[0, %m] : memref<16x512xf32> -> !xegpu.tensor_desc<16x64xf32, #l>
+ %1 = xegpu.load_nd %0: !xegpu.tensor_desc<16x64xf32, #l> -> vector<16x64xf32>
+ // CHECK: vector.multi_reduction <add>, {{.*}}, [[ACC:%[0-9A-Za-z]+]] [0] : vector<16x16xf32> to vector<16xf32>
+ // CHECK-COUNT-3: vector.multi_reduction <add>, {{.*}}, [[ACC]] [0] : vector<16x16xf32> to vector<16xf32>
+ %2 = vector.multi_reduction <add>, %1, %acc {layout_result_0 = #r} [0]: vector<16x64xf32> to vector<64xf32>
+ %3 = xegpu.create_nd_tdesc %b[%m] : memref<512xf32> -> !xegpu.tensor_desc<64xf32, #r>
+ xegpu.store_nd %2, %3: vector<64xf32>, !xegpu.tensor_desc<64xf32, #r>
+ gpu.return
+ }
+}
+
+// -----
+#l = #xegpu.layout<inst_data = [16, 16]>
+#r = #xegpu.layout<inst_data = [16]>
+
+gpu.module @kernel attributes {spirv.target_env = #spirv.target_env<#spirv.vce<v1.4, [Addresses, Float16Buffer, Int64, Int16, Int8, Kernel, Linkage, Vector16, GenericPointer, Groups, Float16, Float64, AtomicFloat32AddEXT, ExpectAssumeKHR, SubgroupDispatch, VectorComputeINTEL, VectorAnyINTEL], [SPV_EXT_shader_atomic_float_add, SPV_KHR_expect_assume, SPV_INTEL_vector_compute]>, api=OpenCL, #spirv.resource_limits<>>} {
+ gpu.func @reduce_dim_1(%a: memref<512x32xf32>, %b: memref<512xf32>) kernel attributes {VectorComputeFunctionINTEL, spirv.entry_point_abi = #spirv.entry_point_abi<>} {
+ %c1 = arith.constant 1 : index
+ %c32 = arith.constant 32 : index
+ %acc = arith.constant dense<0.0> : vector<32xf32>
+
+ %block_id_x = gpu.block_id x
+ %block_id_y = gpu.block_id y
+
+ %m = arith.muli %block_id_x, %c32 : index
+ %n = arith.muli %block_id_y, %c32 : index
+ %0 = xegpu.create_nd_tdesc %a[%m, %n] : memref<512x32xf32> -> !xegpu.tensor_desc<32x128xf32, #l>
+ %1 = xegpu.load_nd %0: !xegpu.tensor_desc<32x128xf32, #l> -> vector<32x128xf32>
+
+ // CHECK: vector.multi_reduction <add>, {{.*}}, [[INIT:%[0-9A-Za-z]+]] [1] : vector<16x16xf32> to vector<16xf32>
+ // CHECK-COUNT-1: vector.multi_reduction <add>, {{.*}}, [[INIT]] [1] : vector<16x16xf32> to vector<16xf32>
+
+ %2 = vector.multi_reduction <add>, %1, %acc {layout_result_0 = #r} [1]: vector<32x128xf32> to vector<32xf32>
+ %3 = xegpu.create_nd_tdesc %b[%n] : memref<512xf32> -> !xegpu.tensor_desc<32xf32, #r>
+ xegpu.store_nd %2, %3: vector<32xf32>, !xegpu.tensor_desc<32xf32, #r>
+ gpu.return
+ }
+}
+
+// -----
+#r = #xegpu.layout<inst_data = [16]>
+#l = #xegpu.layout<inst_data = [16, 16]>
+
+gpu.module @kernel attributes {spirv.target_env = #spirv.target_env<#spirv.vce<v1.4, [Addresses, Float16Buffer, Int64, Int16, Int8, Kernel, Linkage, Vector16, GenericPointer, Groups, Float16, Float64, AtomicFloat32AddEXT, ExpectAssumeKHR, SubgroupDispatch, VectorComputeINTEL, VectorAnyINTEL], [SPV_EXT_shader_atomic_float_add, SPV_KHR_expect_assume, SPV_INTEL_vector_compute]>, api=OpenCL, #spirv.resource_limits<>>} {
+ gpu.func @broadcast_dim_0(%a: memref<512xf32>, %b: memref<16x512xf32>) kernel attributes {VectorComputeFunctionINTEL, spirv.entry_point_abi = #spirv.entry_point_abi<>} {
+
+ %c64 = arith.constant 64 : index
+ %block_id_x = gpu.block_id x
+ %m = arith.muli %block_id_x, %c64 : index
+ %0 = xegpu.create_nd_tdesc %a[%m] : memref<512xf32> -> !xegpu.tensor_desc<64xf32, #r>
+ %1 = xegpu.load_nd %0: !xegpu.tensor_desc<64xf32, #r> -> vector<64xf32>
+ // CHECK-COUNT-4: vector.broadcast {{.*}} : vector<16xf32> to vector<16x16xf32>
+ %2 = vector.broadcast %1 {layout_result_0 = #l} : vector<64xf32> to vector<16x64xf32>
+ %3 = xegpu.create_nd_tdesc %b[0, %m] : memref<16x512xf32> -> !xegpu.tensor_desc<16x64xf32, #l>
+ xegpu.store_nd %2, %3: vector<16x64xf32>, !xegpu.tensor_desc<16x64xf32, #l>
+ gpu.return
+ }
+}
+
+// -----
+#r = #xegpu.layout<inst_data = [16]>
+#l = #xegpu.layout<inst_data = [16, 16]>
+
+gpu.module @kernel attributes {spirv.target_env = #spirv.target_env<#spirv.vce<v1.4, [Addresses, Float16Buffer, Int64, Int16, Int8, Kernel, Linkage, Vector16, GenericPointer, Groups, Float16, Float64, AtomicFloat32AddEXT, ExpectAssumeKHR, SubgroupDispatch, VectorComputeINTEL, VectorAnyINTEL], [SPV_EXT_shader_atomic_float_add, SPV_KHR_expect_assume, SPV_INTEL_vector_compute]>, api=OpenCL, #spirv.resource_limits<>>} {
+ gpu.func @broadcast_dim_1(%a: memref<512xf32>, %b: memref<16x512xf32>) kernel attributes {VectorComputeFunctionINTEL, spirv.entry_point_abi = #spirv.entry_point_abi<>} {
+
+ %c32 = arith.constant 32 : index
+ %block_id_x = gpu.block_id x
+ %m = arith.muli %block_id_x, %c32 : index
+ %0 = xegpu.create_nd_tdesc %a[%m] : memref<512xf32> -> !xegpu.tensor_desc<32xf32, #r>
+ %1 = xegpu.load_nd %0: !xegpu.tensor_desc<32xf32, #r> -> vector<32xf32>
+ %11 = vector.shape_cast %1 : vector<32xf32> to vector<32x1xf32>
+ // CHECK-COUNT-8: vector.broadcast {{.*}}: vector<16x1xf32> to vector<16x16xf32>
+ %2 = vector.broadcast %11 {layout_result_0 = #l} : vector<32x1xf32> to vector<32x64xf32>
+ %3 = xegpu.create_nd_tdesc %b[0, %m] : memref<16x512xf32> -> !xegpu.tensor_desc<32x64xf32, #l>
+ xegpu.store_nd %2, %3: vector<32x64xf32>, !xegpu.tensor_desc<32x64xf32, #l>
+ gpu.return
+ }
+}
+
+// -----
+#l = #xegpu.layout<inst_data = [16, 8]>
+#t = #xegpu.layout<inst_data = [8, 16]>
+
+gpu.module @kernel attributes {spirv.target_env = #spirv.target_env<#spirv.vce<v1.4, [Addresses, Float16Buffer, Int64, Int16, Int8, Kernel, Linkage, Vector16, GenericPointer, Groups, Float16, Float64, AtomicFloat32AddEXT, ExpectAssumeKHR, SubgroupDispatch, VectorComputeINTEL, VectorAnyINTEL], [SPV_EXT_shader_atomic_float_add, SPV_KHR_expect_assume, SPV_INTEL_vector_compute]>, api=OpenCL, #spirv.resource_limits<>>} {
+ gpu.func @transpose(%a: memref<512x8xf32>, %b: memref<8x512xf32>) kernel attributes {VectorComputeFunctionINTEL, spirv.entry_point_abi = #spirv.entry_point_abi<>} {
+
+ %c32 = arith.constant 32 : index
+ %block_id_x = gpu.block_id x
+ %m = arith.muli %block_id_x, %c32 : index
+ %0 = xegpu.create_nd_tdesc %a[%m, 0] : memref<512x8xf32> -> !xegpu.tensor_desc<32x8xf32, #l>
+ %1 = xegpu.load_nd %0: !xegpu.tensor_desc<32x8xf32, #l> -> vector<32x8xf32>
+ // CHECK-COUNT-2: vector.transpose {{.*}} [1, 0] : vector<16x8xf32> to vector<8x16xf32>
+ %2 = vector.transpose %1, [1, 0] {layout_result_0 = #t} : vector<32x8xf32> to vector<8x32xf32>
+ %3 = xegpu.create_nd_tdesc %b[0, %m] : memref<8x512xf32> -> !xegpu.tensor_desc<8x32xf32, #t>
+ xegpu.store_nd %2, %3: vector<8x32xf32>, !xegpu.tensor_desc<8x32xf32, #t>
+ gpu.return
+ }
+}
\ No newline at end of file
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM. Thanks
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM
@Jianhui-Li Congratulations on having your first Pull Request (PR) merged into the LLVM Project! Your changes will be combined with recent changes from other authors, then tested by our build bots. If there is a problem with a build, you may receive a report in an email or a comment on this PR. Please check whether problems have been caused by your change specifically, as the builds can include changes from many authors. It is not uncommon for your change to be included in a build that fails due to someone else's changes, or infrastructure issues. How to do this, and the rest of the post-merge process, is covered in detail here. If your change does cause a problem, it may be reverted, or you can revert it yourself. This is a normal part of LLVM development. You can fix your changes and open a new PR to merge them again. If you don't get any reports, no action is required from you. Your changes are working as expected, well done! |
…se (llvm#143389) This PR adds blocking support for vector dialect operations (`reduce`, `broadcast`, and `transpose`) in the XeGPU based IR. It simply assigned the shape specified by "inst_data" as its target shape of the unrolling to implement the blocking. It is based on llvm#140163.
…se (llvm#143389) This PR adds blocking support for vector dialect operations (`reduce`, `broadcast`, and `transpose`) in the XeGPU based IR. It simply assigned the shape specified by "inst_data" as its target shape of the unrolling to implement the blocking. It is based on llvm#140163.
This PR adds blocking support for vector dialect operations (
reduce
,broadcast
, andtranspose
) in the XeGPU based IR. It simply assigned the shape specified by "inst_data" as its target shape of the unrolling to implement the blocking. It is based on #140163.