mem0-mcp-server wraps the official Mem0 Memory API as a Model Context Protocol (MCP) server so any MCP-compatible client (Claude Desktop, Cursor, custom agents) can add, search, update, and delete long-term memories.
The server exposes the following tools to your LLM:
| Tool | Description |
|---|---|
add_memory |
Save text or conversation history (or explicit message objects) for a user/agent. |
search_memories |
Semantic search across existing memories (filters + limit supported). |
get_memories |
List memories with structured filters and pagination. |
get_memory |
Retrieve one memory by its memory_id. |
update_memory |
Overwrite a memory's text once the user confirms the memory_id. |
delete_memory |
Delete a single memory by memory_id. |
delete_all_memories |
Bulk delete all memories in the confirmed scope (user/agent/app/run). |
delete_entities |
Delete a user/agent/app/run entity (and its memories). |
list_entities |
Enumerate users/agents/apps/runs stored in Mem0. |
All responses are JSON strings returned directly from the Mem0 API.
There are three ways to use the Mem0 MCP Server:
- Python Package - Install and run locally using
uvxwith any MCP client - Docker - Containerized deployment that creates an
/mcpHTTP endpoint - Smithery - Remote hosted service for managed deployments
uv pip install mem0-mcp-serverOr with pip:
pip install mem0-mcp-serverAdd this configuration to your MCP client:
{
"mcpServers": {
"mem0": {
"command": "uvx",
"args": ["mem0-mcp-server"],
"env": {
"MEM0_API_KEY": "m0-...",
"MEM0_DEFAULT_USER_ID": "your-handle"
}
}
}
}Click to expand: Test with the Python Agent
To test the server immediately, use the included Pydantic AI agent:
# Install the package
pip install mem0-mcp-server
# Or with uv
uv pip install mem0-mcp-server
# Set your API keys
export MEM0_API_KEY="m0-..."
export OPENAI_API_KEY="sk-openai-..."
# Clone and test with the agent
git clone https://github.com/mem0ai/mem0-mcp.git
cd mem0-mcp-server
python example/pydantic_ai_repl.pyUsing different server configurations:
# Use with Docker container
export MEM0_MCP_CONFIG_PATH=example/docker-config.json
export MEM0_MCP_CONFIG_SERVER=mem0-docker
python example/pydantic_ai_repl.py
# Use with Smithery remote server
export MEM0_MCP_CONFIG_PATH=example/config-smithery.json
export MEM0_MCP_CONFIG_SERVER=mem0-memory-mcp
python example/pydantic_ai_repl.pyThe Mem0 MCP server enables powerful memory capabilities for your AI applications:
- Remember that I'm allergic to peanuts and shellfish - Add new health information to memory
- Store these trial parameters: 200 participants, double-blind, placebo-controlled study - Save research data
- What do you know about my dietary preferences? - Search and retrieve all food-related memories
- Update my project status: the mobile app is now 80% complete - Modify existing memory with new info
- Delete all memories from 2023, I need a fresh start - Bulk remove outdated memories
- Show me everything I've saved about the Phoenix project - List all memories for a specific topic
MEM0_API_KEY(required) – Mem0 platform API key.MEM0_DEFAULT_USER_ID(optional) – defaultuser_idinjected into filters and write requests (defaults tomem0-mcp).MEM0_ENABLE_GRAPH_DEFAULT(optional) – Enable graph memories by default (defaults tofalse).MEM0_MCP_AGENT_MODEL(optional) – default LLM for the bundled agent example (defaults toopenai:gpt-4o-mini).
Click to expand: Docker, Smithery, and Development
To run with Docker:
-
Build the image:
docker build -t mem0-mcp-server . -
Run the container:
docker run --rm -d \ --name mem0-mcp \ -e MEM0_API_KEY=m0-... \ -p 8080:8081 \ mem0-mcp-server
-
Monitor the container:
# View logs docker logs -f mem0-mcp # Check status docker ps
To connect to a Smithery-hosted server:
-
Install the MCP server (Smithery dependencies are now bundled):
pip install mem0-mcp-server
-
Configure MCP client with Smithery:
{ "mcpServers": { "mem0-memory-mcp": { "command": "npx", "args": [ "-y", "@smithery/cli@latest", "run", "@mem0ai/mem0-memory-mcp", "--key", "your-smithery-key", "--profile", "your-profile-name" ], "env": { "MEM0_API_KEY": "m0-..." } } } }
Clone and run from source:
git clone https://github.com/mem0ai/mem0-mcp.git
cd mem0-mcp-server
pip install -e ".[dev]"
# Run locally
mem0-mcp-server
# Or with uv
uv sync
uv run mem0-mcp-server