Skip to content

Move transform_model_pre_registration in hf_checkpointer #1664

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 14 commits into from
Nov 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 4 additions & 7 deletions llmfoundry/callbacks/hf_checkpointer.py
Original file line number Diff line number Diff line change
Expand Up @@ -784,6 +784,10 @@ def tensor_hook(

if dist.get_global_rank() == 0:
if register_to_mlflow:
assert new_model_instance is not None
new_model_instance = self.transform_model_pre_registration(
new_model_instance,
)
if self.using_peft:

# Save and register peft model to mlflow, this code path uses our older two step logic
Expand All @@ -798,10 +802,6 @@ def tensor_hook(
temp_save_dir,
'register_save',
)
assert new_model_instance is not None
new_model_instance = self.transform_model_pre_registration(
new_model_instance,
)
new_model_instance.save_pretrained(
register_save_dir,
max_shard_size='1GB',
Expand Down Expand Up @@ -860,9 +860,6 @@ def _save_and_register_peft_model(
original_tokenizer: Optional[Any],
save_dir: str,
):
new_model_instance = self.transform_model_pre_registration(
new_model_instance,
)
components = {'model': new_model_instance}
if original_tokenizer is not None:
components['tokenizer'] = original_tokenizer
Expand Down
72 changes: 71 additions & 1 deletion tests/a_scripts/inference/test_convert_composer_to_hf.py
Original file line number Diff line number Diff line change
Expand Up @@ -624,7 +624,7 @@ def test_huggingface_conversion_callback_interval(
def _get_model_and_tokenizer(
model: str,
max_seq_len: int,
tie_word_embeddings: bool,
tie_word_embeddings: Optional[bool],
precision: str,
):
if model == 'mpt':
Expand Down Expand Up @@ -1110,6 +1110,76 @@ def test_huggingface_conversion_callback(
delete_transformers_cache()


@patch('os.cpu_count', MagicMock(return_value=1))
@patch(
'llmfoundry.callbacks.hf_checkpointer.SpawnProcess',
new=MockSpawnProcess,
)
def test_transform_model_pre_registration():
"""Test `transform_model_pre_registration` method is called."""

class ExtendedHuggingFaceCheckpointer(HuggingFaceCheckpointer):
"""Set PEFT to false before registering for testing."""

def transform_model_pre_registration(self, model: PreTrainedModel):
self.using_peft = False
return super().transform_model_pre_registration(model)

model_cfg, tokenizer_name = _get_model_and_tokenizer(
model='neo',
max_seq_len=10,
tie_word_embeddings=None,
precision='bfloat16',
)
model_cfg['peft_config'] = {
'peft_type': 'LORA',
'task_type': 'CAUSAL_LM',
'lora_alpha': 32,
'lora_dropout': 0.05,
'r': 16,
'target_modules': 'all-linear',
}
tokenizer = build_tokenizer(
tokenizer_name=tokenizer_name,
tokenizer_kwargs={},
)

original_model = build_composer_model(
model_cfg.pop('name'),
tokenizer=tokenizer,
cfg=model_cfg,
)

logger = MagicMock()
state = MagicMock()
state.timestamp.batch = 1
state.is_model_ddp = False
state.model = original_model
state.model.tokenizer = tokenizer

checkpointer = ExtendedHuggingFaceCheckpointer(
save_folder='test',
save_interval='1ba',
)
mlflow_logger_mock = _create_mlflow_logger_mock()
checkpointer.mlflow_loggers = [mlflow_logger_mock] # type: ignore

assert model_cfg is not None
assert tokenizer_name is not None

checkpointer._save_and_register_peft_model = MagicMock()
checkpointer.using_peft = True
checkpointer._save_checkpoint(
state=state,
logger=logger,
upload_to_save_folder=True,
register_to_mlflow=True,
)

checkpointer._save_and_register_peft_model.assert_not_called()
assert mlflow_logger_mock.log_model.call_count == 1


# TODO(GRT-2431): Refactor as enums
@pytest.mark.parametrize(
'model,tie_word_embeddings',
Expand Down
Loading