Skip to content

[ci] update baseline for kernal change of vllm and lmdeploy #2011

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
Apr 9, 2025
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 13 additions & 13 deletions .github/scripts/oc_score_baseline_fullbench.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ internlm2_5-7b-chat-hf_fullbench:
drop_accuracy: 81.25
GPQA_diamond_accuracy: 25
hellaswag_accuracy: 87.5
TheoremQA_score: 18.75
TheoremQA_score: 12.50
musr_average_naive_average: 39.58
korbench_single_naive_average: 40
gsm8k_accuracy: 62.50
Expand Down Expand Up @@ -162,7 +162,7 @@ internlm2_5-7b-hf_fullbench:
drop_accuracy: 62.5
GPQA_diamond_accuracy: 62.5
hellaswag_accuracy: 93.75
TheoremQA_score: 25
TheoremQA_score: 12.50
winogrande_accuracy: 75
gsm8k_accuracy: 37.5
GaokaoBench_2010-2022_Math_II_MCQs_score: 62.5
Expand Down Expand Up @@ -190,7 +190,7 @@ internlm2_5-7b-turbomind_fullbench:
drop_accuracy: 62.5
GPQA_diamond_accuracy: 62.5
hellaswag_accuracy: 93.75
TheoremQA_score: 31.25
TheoremQA_score: 12.50
winogrande_accuracy: 87.5
gsm8k_accuracy: 56.25
GaokaoBench_2010-2022_Math_II_MCQs_score: 68.75
Expand Down Expand Up @@ -391,7 +391,7 @@ internlm2_5-7b-chat-turbomind:
alpaca_eval_total: 25.96
arenahard_score: 17.15
Followbench_naive_average: 0.81
CompassArena_naive_average: 34.61
CompassArena_naive_average: 39.49
FoFo_naive_average: 0.38
mtbench101_avg: 8.01
wildbench_average: -10.49
Expand All @@ -410,10 +410,10 @@ internlm2_5-7b-chat-turbomind:
alpaca_eval_oasst: 23.4
alpaca_eval_selfinstruct: 30.95
alpaca_eval_vicuna: 33.75
compassarena_language_naive_average: 52.5
compassarena_language_naive_average: 58.50
compassarena_knowledge_naive_average: 36
compassarena_reason_v2_naive_average: 35
compassarena_math_v2_naive_average: 19.91
compassarena_math_v2_naive_average: 25.95
compassarena_creationv2_zh_naive_average: 43.64
fofo_test_prompts_overall: 0.35
fofo_test_prompts_cn_overall: 0.41
Expand Down Expand Up @@ -493,7 +493,7 @@ qwen2.5-7b-instruct-turbomind:
bigcodebench_hard_instruct_pass@1: 16.22
bigcodebench_hard_complete_pass@1: 11.49
teval_naive_average: 79.72
SciCode_sub_accuracy: 100
SciCode_sub_accuracy: 10.76
qa_dingo_cn_score: 99.01
mmlu_accuracy: 76.01
mmlu-stem_accuracy: 77.59
Expand Down Expand Up @@ -600,7 +600,7 @@ internlm2_5-7b-chat-pytorch:
bigcodebench_hard_instruct_pass@1: 6.08
bigcodebench_hard_complete_pass@1: 6.76
teval_naive_average: 79.73
SciCode_sub_accuracy: 100
SciCode_sub_accuracy: 3.47
qa_dingo_cn_score: 100
mmlu_accuracy: 70.2
mmlu-stem_accuracy: 67.73
Expand Down Expand Up @@ -689,7 +689,7 @@ qwen2.5-7b-instruct-pytorch:
GaokaoBench_weighted_average: 80.02
math_accuracy: 73.74
cmo_fib_accuracy: 26.44
aime2024_accuracy: 10
aime2024_accuracy: 13.33
Mathbench_naive_average: 77.08
wikibench-wiki-single_choice_cncircular_perf_4: 34
cmmlu_naive_average: 75.9
Expand All @@ -705,7 +705,7 @@ qwen2.5-7b-instruct-pytorch:
bigcodebench_hard_instruct_pass@1: 16.89
bigcodebench_hard_complete_pass@1: 12.16
teval_naive_average: 79.46
SciCode_sub_accuracy: 100
SciCode_sub_accuracy: 10.42
qa_dingo_cn_score: 100
mmlu_accuracy: 76.27
mmlu-stem_accuracy: 77.75
Expand Down Expand Up @@ -810,7 +810,7 @@ internlm3-8b-instruct-turbomind:
bigcodebench_hard_instruct_pass@1: 13.51
bigcodebench_hard_complete_pass@1: 15.54
teval_naive_average: 82.86
SciCode_sub_accuracy: 100
SciCode_sub_accuracy: 11.11
qa_dingo_cn_score: 100
mmlu_accuracy: 76.21
mmlu-stem_accuracy: 77.7
Expand Down Expand Up @@ -889,7 +889,7 @@ internlm3-8b-instruct-pytorch:
IFEval_Prompt-level-strict-accuracy: 79.11
drop_accuracy: 83.32
bbh_naive_average: 54.76
GPQA_diamond_accuracy: 42.42
GPQA_diamond_accuracy: 33.84
hellaswag_accuracy: 91.31
TheoremQA_score: 18
musr_average_naive_average: 36.62
Expand All @@ -915,7 +915,7 @@ internlm3-8b-instruct-pytorch:
bigcodebench_hard_instruct_pass@1: 12.84
bigcodebench_hard_complete_pass@1: 15.54
teval_naive_average: 82.86
SciCode_sub_accuracy: 100
SciCode_sub_accuracy: 9.38
qa_dingo_cn_score: 100
mmlu_accuracy: 76.23
mmlu-stem_accuracy: 78.08
Expand Down
78 changes: 39 additions & 39 deletions .github/scripts/oc_score_baseline_testrange.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ chat:
gsm8k_accuracy: 71.88
race-high_accuracy: 90.62
glm-4-9b-chat-vllm:
gsm8k_accuracy: 68.75
gsm8k_accuracy: 71.88
race-high_accuracy: 90.62
deepseek-7b-chat-hf:
gsm8k_accuracy: 46.88
Expand Down Expand Up @@ -84,7 +84,7 @@ chat:
gsm8k_accuracy: 81.25
race-high_accuracy: 90.62
llama-3_2-3b-instruct-turbomind:
gsm8k_accuracy: 75.00
gsm8k_accuracy: 68.75
race-high_accuracy: 81.25
llama-3-8b-instruct-turbomind:
gsm8k_accuracy: 68.75
Expand Down Expand Up @@ -204,14 +204,14 @@ chat:
gsm8k_accuracy: 90.62
race-high_accuracy: 84.38
mixtral-8x22b-instruct-v0.1-turbomind:
gsm8k_accuracy: 75
gsm8k_accuracy: 78.12
race-high_accuracy: 78.12
mixtral-8x22b-instruct-v0.1-vllm:
gsm8k_accuracy: 78.12
race-high_accuracy: 78.12
base:
glm-4-9b-turbomind:
gsm8k_accuracy: 56.25
gsm8k_accuracy: 59.38
GPQA_diamond_accuracy: 28.12
race-high_accuracy: 93.75
winogrande_accuracy: 84.38
Expand Down Expand Up @@ -253,8 +253,8 @@ base:
gemma-2-9b-turbomind:
gsm8k_accuracy: 68.75
GPQA_diamond_accuracy: 0
race-high_accuracy: 78.12
winogrande_accuracy: 50
race-high_accuracy: 18.75
winogrande_accuracy: 46.88
gemma-2b-vllm:
gsm8k_accuracy: 15.62
GPQA_diamond_accuracy: 3.12
Expand All @@ -281,20 +281,20 @@ base:
race-high_accuracy: 71.88
winogrande_accuracy: 75
internlm2_5-7b-turbomind:
gsm8k_accuracy: 59.38
GPQA_diamond_accuracy: 34.38
gsm8k_accuracy: 62.5
GPQA_diamond_accuracy: 31.25
race-high_accuracy: 93.75
winogrande_accuracy: 84.38
winogrande_accuracy: 87.5
internlm2-7b-turbomind:
gsm8k_accuracy: 50
GPQA_diamond_accuracy: 18.75
race-high_accuracy: 71.88
winogrande_accuracy: 84.38
gsm8k_accuracy: 59.38
GPQA_diamond_accuracy: 34.38
race-high_accuracy: 78.12
winogrande_accuracy: 71.88
internlm2-base-7b-turbomind:
gsm8k_accuracy: 37.50
GPQA_diamond_accuracy: 21.88
race-high_accuracy: 84.38
winogrande_accuracy: 75
gsm8k_accuracy: 28.12
GPQA_diamond_accuracy: 31.25
race-high_accuracy: 71.88
winogrande_accuracy: 62.50
llama-2-7b-hf:
gsm8k_accuracy: 21.88
GPQA_diamond_accuracy: 21.88
Expand All @@ -311,15 +311,15 @@ base:
race-high_accuracy: 65.62
winogrande_accuracy: 65.62
llama-3.1-8b-turbomind:
gsm8k_accuracy: 56.25
GPQA_diamond_accuracy: 9.38
gsm8k_accuracy: 59.38
GPQA_diamond_accuracy: 15.62
race-high_accuracy: 78.12
winogrande_accuracy: 78.12
llama-3-8b-turbomind:
gsm8k_accuracy: 46.88
GPQA_diamond_accuracy: 12.50
race-high_accuracy: 65.62
winogrande_accuracy: 78.12
winogrande_accuracy: 81.25
mistral-7b-v0.3-hf:
gsm8k_accuracy: 31.25
GPQA_diamond_accuracy: 6.25
Expand All @@ -331,8 +331,8 @@ base:
race-high_accuracy: 87.5
winogrande_accuracy: 71.88
qwen2.5-1.5b-turbomind:
gsm8k_accuracy: 62.50
GPQA_diamond_accuracy: 15.62
gsm8k_accuracy: 59.38
GPQA_diamond_accuracy: 18.75
race-high_accuracy: 75
winogrande_accuracy: 71.88
qwen2.5-7b-turbomind:
Expand Down Expand Up @@ -362,19 +362,19 @@ base:
winogrande_accuracy: 68.75
qwen2-1.5b-turbomind:
gsm8k_accuracy: 59.38
GPQA_diamond_accuracy: 12.50
GPQA_diamond_accuracy: 6.25
race-high_accuracy: 81.25
winogrande_accuracy: 75
qwen2-7b-turbomind:
gsm8k_accuracy: 65.62
gsm8k_accuracy: 62.5
GPQA_diamond_accuracy: 12.5
race-high_accuracy: 87.5
winogrande_accuracy: 71.88
winogrande_accuracy: 75
qwen1.5-0.5b-vllm:
gsm8k_accuracy: 6.25
gsm8k_accuracy: 9.38
GPQA_diamond_accuracy: 0
race-high_accuracy: 56.25
winogrande_accuracy: 62.5
winogrande_accuracy: 59.38
yi-1.5-6b-hf:
gsm8k_accuracy: 62.5
GPQA_diamond_accuracy: 3.12
Expand All @@ -387,11 +387,11 @@ base:
winogrande_accuracy: 59.38
yi-1.5-9b-turbomind:
gsm8k_accuracy: 78.12
GPQA_diamond_accuracy: 43.75
GPQA_diamond_accuracy: 40.62
race-high_accuracy: 87.5
winogrande_accuracy: 71.88
winogrande_accuracy: 65.62
internlm2-20b-turbomind:
gsm8k_accuracy: 75
gsm8k_accuracy: 71.88
GPQA_diamond_accuracy: 18.75
race-high_accuracy: 68.75
winogrande_accuracy: 81.25
Expand All @@ -406,18 +406,18 @@ base:
race-high_accuracy: 93.75
winogrande_accuracy: 78.12
qwen2.5-32b-turbomind:
gsm8k_accuracy: 87.5
GPQA_diamond_accuracy: 18.75
gsm8k_accuracy: 84.38
GPQA_diamond_accuracy: 28.12
race-high_accuracy: 93.75
winogrande_accuracy: 81.25
deepseek-67b-base-turbomind:
gsm8k_accuracy: 53.12
GPQA_diamond_accuracy: 28.12
race-high_accuracy: 81.25
winogrande_accuracy: 84.38
gsm8k_accuracy: 59.38
GPQA_diamond_accuracy: 34.38
race-high_accuracy: 78.12
winogrande_accuracy: 81.25
llama-3-70b-turbomind:
gsm8k_accuracy: 56.25
GPQA_diamond_accuracy: 12.50
GPQA_diamond_accuracy: 15.62
race-high_accuracy: 93.75
winogrande_accuracy: 84.38
qwen2.5-72b-turbomind:
Expand All @@ -426,7 +426,7 @@ base:
race-high_accuracy: 93.75
winogrande_accuracy: 87.5
deepseek-v2-turbomind:
gsm8k_accuracy: 59.38
GPQA_diamond_accuracy: 3.12
gsm8k_accuracy: 65.62
GPQA_diamond_accuracy: 9.38
race-high_accuracy: 93.75
winogrande_accuracy: 81.25
2 changes: 1 addition & 1 deletion .github/workflows/daily-run-test.yml
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@ on:
type: string
default: "['base_objective','chat_objective','chat_subjective','base_long_context','chat_long_context']"
schedule:
- cron: '15 14 * * 0,2'
- cron: '15 14 * * 0,3'

env:
HF_DATASETS_OFFLINE: 1
Expand Down
1 change: 1 addition & 0 deletions opencompass/datasets/subjective/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
from .arena_hard import ArenaHardDataset # noqa: F401, F403
from .arena_hard import arenahard_bradleyterry_postprocess # noqa: F401, F403
from .arena_hard import arenahard_postprocess # noqa: F401, F403
from .commonbench import commonbench_postprocess
from .compass_arena import CompassArenaDataset # noqa: F401, F403
from .compass_arena import \
compassarena_bradleyterry_postprocess # noqa: F401, F403
Expand Down
55 changes: 55 additions & 0 deletions opencompass/datasets/subjective/commonbench.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
# flake8: noqa: E501
import re
from collections import defaultdict
from typing import Optional

from opencompass.registry import DICT_POSTPROCESSORS

from .utils import get_judgeanswer_and_reference


def post_process(judgement: str):
"""Input a string like below:

xxx[[5]]xxx, and extract the score
"""
pattern = r'\[\[([\d.]+)\]\]'
matched_result = re.findall(pattern, judgement)
if matched_result:
score = float(matched_result[0])
else:
return None
return {'score': score}


def get_capability_results(judged_answers, references):
capability_ratings = defaultdict(int)
capability_counts = defaultdict(int)
for ans, ref in zip(judged_answers, references):
capability_ratings['total'] += ans['score']
capability_counts['total'] += 1
capability_ratings[ref['capability']] += ans['score']
capability_counts[ref['capability']] += 1

capability_avg_ratings = defaultdict(float)

for capability, total_score in capability_ratings.items():
s = total_score / capability_counts[capability]
s = round(s, 2)
capability_avg_ratings[capability] = s

return capability_avg_ratings


@DICT_POSTPROCESSORS.register_module('commenbench')
def commonbench_postprocess(
output: dict,
output_path: str,
post_process: Optional[callable] = post_process,
) -> dict:
judged_answers, references = get_judgeanswer_and_reference(
output, output_path, post_process)

results = get_capability_results(judged_answers, references)
results['details'] = output
return results
Loading