Description
-
[x ] I have checked that this issue has not already been reported.
-
[x ] I have confirmed this bug exists on the latest version of pandas.
Code Sample, a copy-pastable example
from typing import Tuple
import numpy as np
from pandas import DataFrame
from torch.tensor import Tensor
from torchvision import transforms, datasets
import torch
def __loadMNISTData() -> Tuple[DataFrame, DataFrame]:
trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))])
# if not exist, download mnist dataset
trainSet = datasets.MNIST("data", train=True, transform=trans, download=True)
testSet = datasets.MNIST("data", train=False, transform=trans, download=True)
# Scale pixel intensities to [-1, 1]
xTrain: Tensor = trainSet.train_data
xTrain = 2 * (xTrain.float() / 255.0) - 1
# list of 2D images to 1D pixel intensities
xTrain = xTrain.flatten(1, 2).numpy()
yTrain = trainSet.train_labels.numpy()
# Scale pixel intensities to [-1, 1]
xtest: Tensor = testSet.test_data.clone().detach()
xtest = 2 * (xtest.float() / 255.0) - 1
# list of 2D images to 1D pixel intensities
xTest: np.ndarray = xtest.flatten(1, 2).numpy()
yTest: np.ndarray = testSet.test_labels.numpy()
trainDataframe = DataFrame(zip(xTrain, yTrain))
testDataframe = DataFrame(zip(xTest, yTest))
trainDataframe.columns = testDataframe.columns = ["data", "labels"]
return trainDataframe, testDataframe
def _filterDataByLabel(
labels: Tensor, trainDataframe: DataFrame, testDataframe: DataFrame
) -> Tuple[DataFrame, DataFrame]:
print("\nEntering _filterDataByLabel()")
print(f"labels: {labels}")
print(f"Lengths: {len(trainDataframe)}, {len(testDataframe)}")
trainDataframe = trainDataframe[trainDataframe["labels"].isin(labels)]
testDataframe = testDataframe[testDataframe["labels"].isin(labels)]
print(f"Lengths: {len(trainDataframe)}, {len(testDataframe)}")
print(f"Unique values: {trainDataframe['labels'].unique()}")
print("Exiting _filterDataByLabel()\n")
return trainDataframe, testDataframe
data = __loadMNISTData()
labels = torch.tensor(range(10))
trainDataframe, testDataframe = self._filterDataByLabel(labels, *data)
Problem description
So for some reason, the labels that are passed into the isin
function, aren't the same as the unique values.
E.g. I'll put 0-9 in and get back a random amount each time even though I set the seeds for python, np, torch and cuda.
If I change labels from a Tensor into a list then this no longer happens.
The weirdest part is that this doesn't happen on my AMD Ryzen 5600x but it does happen on 6th and 8th gen Intel i7 laptop CPUs.
Expected Output
The unique values should always be the same as the labels going in even if it's a tensor and no matter what CPU is used.
Output of pd.show_versions()
These are the details from my laptop containing the 8th gen i7 cpu
INSTALLED VERSIONS
commit : 2cb9652
python : 3.8.8.final.0
python-bits : 64
OS : Linux
OS-release : 5.11.0-17-generic
Version : #18-Ubuntu SMP Thu May 6 20:10:11 UTC 2021
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_GB.UTF-8
LOCALE : en_GB.UTF-8
pandas : 1.2.4
numpy : 1.19.4
pytz : 2021.1
dateutil : 2.8.1
pip : 21.0.1
setuptools : 52.0.0.post20210125
Cython : 0.29.23
pytest : 6.2.3
hypothesis : None
sphinx : 4.0.1
blosc : None
feather : None
xlsxwriter : 1.3.8
lxml.etree : 4.6.3
html5lib : 1.1
pymysql : None
psycopg2 : None
jinja2 : 2.11.3
IPython : 7.22.0
pandas_datareader: None
bs4 : 4.9.3
bottleneck : 1.3.2
fsspec : 0.9.0
fastparquet : None
gcsfs : None
matplotlib : 3.3.2
numexpr : 2.7.3
odfpy : None
openpyxl : 3.0.7
pandas_gbq : None
pyarrow : None
pyxlsb : None
s3fs : None
scipy : 1.6.0
sqlalchemy : 1.4.15
tables : 3.6.1
tabulate : None
xarray : None
xlrd : 2.0.1
xlwt : 1.3.0
numba : 0.53.1
None
Activity
mzeitlin11 commentedon Jul 1, 2021
Thanks for reporting this @SamuelTrew! In general, we don't test against
pytorch
, and no compatibility is guaranteed. Would always recommend converting tonumpy
first, since otherwise you might run into strange behavior like here :) Investigations to fix this are welcome, though any solution would ideally patch a logical flaw in existing code, and not just add torch-specific logic.mroeschke commentedon Aug 24, 2024
Thanks for the request but it appears this hasn't gotten traction in a while so closing