Skip to content

BUG: DataFrame isin function randomly selects values (instead of using them all) when on Intel CPU and input is a torch Tensor #41827

Closed
@SamuelTrew

Description

@SamuelTrew
  • [x ] I have checked that this issue has not already been reported.

  • [x ] I have confirmed this bug exists on the latest version of pandas.


Code Sample, a copy-pastable example

from typing import Tuple

import numpy as np
from pandas import DataFrame
from torch.tensor import Tensor
from torchvision import transforms, datasets
import torch

def __loadMNISTData() -> Tuple[DataFrame, DataFrame]:
    trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))])
  
    # if not exist, download mnist dataset
    trainSet = datasets.MNIST("data", train=True, transform=trans, download=True)
    testSet = datasets.MNIST("data", train=False, transform=trans, download=True)
  
    # Scale pixel intensities to [-1, 1]
    xTrain: Tensor = trainSet.train_data
    xTrain = 2 * (xTrain.float() / 255.0) - 1
    # list of 2D images to 1D pixel intensities
    xTrain = xTrain.flatten(1, 2).numpy()
    yTrain = trainSet.train_labels.numpy()
  
    # Scale pixel intensities to [-1, 1]
    xtest: Tensor = testSet.test_data.clone().detach()
    xtest = 2 * (xtest.float() / 255.0) - 1
    # list of 2D images to 1D pixel intensities
    xTest: np.ndarray = xtest.flatten(1, 2).numpy()
    yTest: np.ndarray = testSet.test_labels.numpy()
  
    trainDataframe = DataFrame(zip(xTrain, yTrain))
    testDataframe = DataFrame(zip(xTest, yTest))
    trainDataframe.columns = testDataframe.columns = ["data", "labels"]

    return trainDataframe, testDataframe

def _filterDataByLabel( 
    labels: Tensor, trainDataframe: DataFrame, testDataframe: DataFrame
) -> Tuple[DataFrame, DataFrame]:
    print("\nEntering _filterDataByLabel()")
    print(f"labels: {labels}")
    print(f"Lengths: {len(trainDataframe)}, {len(testDataframe)}")
    trainDataframe = trainDataframe[trainDataframe["labels"].isin(labels)]
    testDataframe = testDataframe[testDataframe["labels"].isin(labels)]
    print(f"Lengths: {len(trainDataframe)}, {len(testDataframe)}")
    print(f"Unique values: {trainDataframe['labels'].unique()}")
    print("Exiting _filterDataByLabel()\n")
    return trainDataframe, testDataframe


data = __loadMNISTData()
labels = torch.tensor(range(10))
trainDataframe, testDataframe = self._filterDataByLabel(labels, *data)

Problem description

So for some reason, the labels that are passed into the isin function, aren't the same as the unique values.
E.g. I'll put 0-9 in and get back a random amount each time even though I set the seeds for python, np, torch and cuda.
If I change labels from a Tensor into a list then this no longer happens.

The weirdest part is that this doesn't happen on my AMD Ryzen 5600x but it does happen on 6th and 8th gen Intel i7 laptop CPUs.

Expected Output

The unique values should always be the same as the labels going in even if it's a tensor and no matter what CPU is used.

Output of pd.show_versions()

These are the details from my laptop containing the 8th gen i7 cpu

INSTALLED VERSIONS

commit : 2cb9652
python : 3.8.8.final.0
python-bits : 64
OS : Linux
OS-release : 5.11.0-17-generic
Version : #18-Ubuntu SMP Thu May 6 20:10:11 UTC 2021
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_GB.UTF-8
LOCALE : en_GB.UTF-8
pandas : 1.2.4
numpy : 1.19.4
pytz : 2021.1
dateutil : 2.8.1
pip : 21.0.1
setuptools : 52.0.0.post20210125
Cython : 0.29.23
pytest : 6.2.3
hypothesis : None
sphinx : 4.0.1
blosc : None
feather : None
xlsxwriter : 1.3.8
lxml.etree : 4.6.3
html5lib : 1.1
pymysql : None
psycopg2 : None
jinja2 : 2.11.3
IPython : 7.22.0
pandas_datareader: None
bs4 : 4.9.3
bottleneck : 1.3.2
fsspec : 0.9.0
fastparquet : None
gcsfs : None
matplotlib : 3.3.2
numexpr : 2.7.3
odfpy : None
openpyxl : 3.0.7
pandas_gbq : None
pyarrow : None
pyxlsb : None
s3fs : None
scipy : 1.6.0
sqlalchemy : 1.4.15
tables : 3.6.1
tabulate : None
xarray : None
xlrd : 2.0.1
xlwt : 1.3.0
numba : 0.53.1
None

Activity

added
Needs TriageIssue that has not been reviewed by a pandas team member
on Jun 5, 2021
mzeitlin11

mzeitlin11 commented on Jul 1, 2021

@mzeitlin11
Member

Thanks for reporting this @SamuelTrew! In general, we don't test against pytorch, and no compatibility is guaranteed. Would always recommend converting to numpy first, since otherwise you might run into strange behavior like here :) Investigations to fix this are welcome, though any solution would ideally patch a logical flaw in existing code, and not just add torch-specific logic.

added
Compatpandas objects compatability with Numpy or Python functions
isinisin method
and removed
Needs TriageIssue that has not been reviewed by a pandas team member
on Jul 1, 2021
mroeschke

mroeschke commented on Aug 24, 2024

@mroeschke
Member

Thanks for the request but it appears this hasn't gotten traction in a while so closing

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Metadata

Metadata

Assignees

No one assigned

    Labels

    Compatpandas objects compatability with Numpy or Python functionsEnhancementisinisin method

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

      Development

      No branches or pull requests

        Participants

        @mroeschke@SamuelTrew@mzeitlin11

        Issue actions

          BUG: DataFrame `isin` function randomly selects values (instead of using them all) when on Intel CPU and input is a torch Tensor · Issue #41827 · pandas-dev/pandas