-
Notifications
You must be signed in to change notification settings - Fork 610
add dynamic quantize gemm benchmark [step 2: fp16->int8 quantize] #2295
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
✅ Deploy Preview for pytorch-fbgemm-docs ready!
To edit notification comments on pull requests, go to your Netlify site configuration. |
This pull request was exported from Phabricator. Differential Revision: D52136852 |
…torch#2295) Summary: - Add FX Kernel benchmark for dynamic quantized gemm step-2 - Use `quantize_step` parameter to differentiate different stages - Separate Net modules for step-2 vs step-1 -- Differential Revision: D52136852
…torch#2295) Summary: - Add FX Kernel benchmark for dynamic quantized gemm step-2 - Use `quantize_step` parameter to differentiate different stages - Separate Net modules for step-2 vs step-1 -- Differential Revision: D52136852
8d8aa59
to
ad356b7
Compare
This pull request was exported from Phabricator. Differential Revision: D52136852 |
1 similar comment
This pull request was exported from Phabricator. Differential Revision: D52136852 |
…torch#2295) Summary: - Add FX Kernel benchmark for dynamic quantized gemm step-2 - Use `quantize_step` parameter to differentiate different stages - Separate Net modules for step-2 vs step-1 -- Differential Revision: D52136852
This pull request was exported from Phabricator. Differential Revision: D52136852 |
…torch#2295) Summary: - Add FX Kernel benchmark for dynamic quantized gemm step-2 - Use `quantize_step` parameter to differentiate different stages - Separate Net modules for step-2 vs step-1 -- Differential Revision: D52136852
ad356b7
to
a0df5e2
Compare
This pull request was exported from Phabricator. Differential Revision: D52136852 |
…torch#2295) Summary: - Add FX Kernel benchmark for dynamic quantized gemm step-2 - Use `quantize_step` parameter to differentiate different stages - Separate Net modules for step-2 vs step-1 -- Differential Revision: D52136852
…torch#2295) Summary: - Add FX Kernel benchmark for dynamic quantized gemm step-2 - Use `quantize_step` parameter to differentiate different stages - Separate Net modules for step-2 vs step-1 -- Differential Revision: D52136852
a0df5e2
to
d24b38e
Compare
This pull request was exported from Phabricator. Differential Revision: D52136852 |
d24b38e
to
a0df5e2
Compare
This pull request was exported from Phabricator. Differential Revision: D52136852 |
a0df5e2
to
d24b38e
Compare
This pull request was exported from Phabricator. Differential Revision: D52136852 |
…torch#2295) Summary: Pull Request resolved: pytorch#2295 - Add FX Kernel benchmark for dynamic quantized gemm step-2 - Use `quantize_step` parameter to differentiate different stages - Separate Net modules for step-2 vs step-1 -- Differential Revision: D52136852 fbshipit-source-id: 519e842dd60c65fade6c3c37982c6f1628aff4d7
This pull request was exported from Phabricator. Differential Revision: D52136852 |
…torch#2295) Summary: Pull Request resolved: pytorch#2295 - Add FX Kernel benchmark for dynamic quantized gemm step-2 - Use `quantize_step` parameter to differentiate different stages - Separate Net modules for step-2 vs step-1 -- Differential Revision: D52136852 fbshipit-source-id: 277559d27bfe1da803918e5e7dffed8b8a8a6c73
d24b38e
to
a26d5e9
Compare
This pull request was exported from Phabricator. Differential Revision: D52136852 |
…torch#2295) Summary: Pull Request resolved: pytorch#2295 - Add FX Kernel benchmark for dynamic quantized gemm step-2 - Use `quantize_step` parameter to differentiate different stages - Separate Net modules for step-2 vs step-1 -- Differential Revision: D52136852 fbshipit-source-id: eeabe9bfb94e07d1c336dab18150022d5582dcd6
a26d5e9
to
e835ceb
Compare
This pull request was exported from Phabricator. Differential Revision: D52136852 |
…torch#2295) Summary: - Register the 2nd step operator `qlinear_quant` into FX stack - Add FX Kernel benchmark for dynamic quantized gemm step-2 - Use `quantize_step` parameter to differentiate different stages - Separate Net modules for step-2 vs step-1 -- result: https://fb-my.sharepoint.com/:x:/g/personal/jiyuanz_meta_com/Ec94q-KgmslMtQ7nIYT4240BZUyWiK-iQvP1cBgzfgEDWg?e=DfP82U 1K x 1K: 638 cycles (5.10 us) --> 411 GB/s 2K x 2K: 1200 cycles (9.6 us) --> 873 GB/s Reviewed By: charliezjw Differential Revision: D52136852
e835ceb
to
6fdfde4
Compare
This pull request was exported from Phabricator. Differential Revision: D52136852 |
This pull request has been merged in 44fc10a. |
…torch#2295) Summary: Pull Request resolved: pytorch/torchrec#2295 Differential Revision: D61175593
Summary:
quantize_step
parameter to differentiate different stagesDifferential Revision: D52136852