-
-
Notifications
You must be signed in to change notification settings - Fork 24
signal: Add type stubs to _spectral_py.pyi.
#157
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
18 commits
Select commit
Hold shift + click to select a range
b32f27d
`signal`: Add type stubs for `check_NOLA` and `check_COLA`.
pavyamsiri f7ba439
`signal`: Add type stubs for function `csd`.
pavyamsiri 58cfd75
`signal`: Add type stubs for `lombscargle`, `periodogram` and `welch`.
pavyamsiri 9f24afa
`signal`: Add type stubs for `spectrogram`.
pavyamsiri 3c30e05
tests: Add type test for `spectrogram` from the `signal` module.
pavyamsiri 22dad83
`signal`: Add type stubs for `stft` and `istft`.
pavyamsiri 973820e
tests: Add type tests for function overloads of `istft`.
pavyamsiri bcf3d42
`signal`: Add type stubs for `coherence`.
pavyamsiri cc8f55a
`signal`: Clean up `_spectral_py.pyi`.
pavyamsiri f302e55
`signal`: Adjust type aliases in `_spectral_py.pyi`.
pavyamsiri d8e6561
`signal`: Tighten the return array dtypes in `_spectral_py.pyi`.
pavyamsiri face996
tests: Clean up `test_spectral.pyi`.
pavyamsiri 2f7e1c6
`signal`: Fix up comment inconsistency in `_spectral_py.pyi`.
pavyamsiri 4dfb44a
`signal`: Use the more portable names for dtypes in `_spectral_py.pyi`.
pavyamsiri 6728216
`signal`: Use `np.bool_` instead of `np.bool`.
pavyamsiri 847504c
`signal`: Use `np.bool_` instead of `np.bool`
pavyamsiri 3bb8780
`signal`: Use a type alias for `_GetWindowArgument | _ArrayLikeFloat_co`
pavyamsiri fb5c85d
tests: Update `test_spectral.pyi` to use the correct dtypes
pavyamsiri File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -1,97 +1,207 @@ | ||
| from typing import Literal | ||
| from collections.abc import Callable | ||
| from typing import Literal, TypeAlias, overload | ||
| from typing_extensions import Unpack | ||
|
|
||
| from scipy._typing import Untyped, UntypedCallable | ||
| import numpy as np | ||
| import numpy.typing as npt | ||
| import optype as op | ||
| from numpy._typing import _ArrayLikeFloat_co, _ArrayLikeNumber_co | ||
| from scipy._typing import AnyInt, AnyReal | ||
| from .windows._windows import _Window, _WindowNeedsParams | ||
|
|
||
| __all__ = ["check_COLA", "check_NOLA", "coherence", "csd", "istft", "lombscargle", "periodogram", "spectrogram", "stft", "welch"] | ||
|
|
||
| def lombscargle(x: Untyped, y: Untyped, freqs: Untyped, precenter: bool = False, normalize: bool = False) -> Untyped: ... | ||
| _Array_f8: TypeAlias = npt.NDArray[np.float64] | ||
| _Array_f8_1d: TypeAlias = np.ndarray[tuple[int], np.dtype[np.float64]] | ||
| _ArrayFloat: TypeAlias = npt.NDArray[np.float32 | np.float64 | np.longdouble] | ||
| _ArrayComplex: TypeAlias = npt.NDArray[np.complex64 | np.complex128 | np.clongdouble] | ||
|
|
||
| _GetWindowArgument: TypeAlias = _Window | tuple[_Window | _WindowNeedsParams, Unpack[tuple[object, ...]]] | ||
| _WindowLike: TypeAlias = _GetWindowArgument | _ArrayLikeFloat_co | ||
| _Detrend: TypeAlias = Literal["literal", "constant", False] | Callable[[npt.NDArray[np.generic]], npt.NDArray[np.generic]] | ||
| _Scaling: TypeAlias = Literal["density", "spectrum"] | ||
| _LegacyScaling: TypeAlias = Literal["psd", "spectrum"] | ||
| _Average: TypeAlias = Literal["mean", "median"] | ||
| _Boundary: TypeAlias = Literal["even", "odd", "constant", "zeros"] | None | ||
|
|
||
| def lombscargle( | ||
| x: _ArrayLikeFloat_co, | ||
| y: _ArrayLikeFloat_co, | ||
| freqs: _ArrayLikeFloat_co, | ||
| precenter: op.CanBool = False, | ||
| normalize: op.CanBool = False, | ||
| ) -> _Array_f8_1d: ... | ||
| def periodogram( | ||
| x: Untyped, | ||
| fs: float = 1.0, | ||
| window: str = "boxcar", | ||
| nfft: int | None = None, | ||
| detrend: str | Literal[False] | UntypedCallable = "constant", | ||
| return_onesided: bool = True, | ||
| scaling: str = "density", | ||
| axis: int = -1, | ||
| ) -> Untyped: ... | ||
| x: _ArrayLikeNumber_co, | ||
| fs: AnyReal = 1.0, | ||
| window: _WindowLike | None = "boxcar", | ||
| nfft: AnyInt | None = None, | ||
| detrend: _Detrend = "constant", | ||
| return_onesided: op.CanBool = True, | ||
| scaling: _Scaling = "density", | ||
| axis: op.CanIndex = -1, | ||
| ) -> tuple[_Array_f8, _ArrayFloat]: ... | ||
| def welch( | ||
| x: Untyped, | ||
| fs: float = 1.0, | ||
| window: str = "hann", | ||
| nperseg: int | None = None, | ||
| noverlap: int | None = None, | ||
| nfft: int | None = None, | ||
| detrend: str | Literal[False] | UntypedCallable = "constant", | ||
| return_onesided: bool = True, | ||
| scaling: str = "density", | ||
| axis: int = -1, | ||
| average: str = "mean", | ||
| ) -> Untyped: ... | ||
| x: _ArrayLikeNumber_co, | ||
| fs: AnyReal = 1.0, | ||
| window: _WindowLike = "hann", | ||
| nperseg: AnyInt | None = None, | ||
| noverlap: AnyInt | None = None, | ||
| nfft: AnyInt | None = None, | ||
| detrend: _Detrend = "constant", | ||
| return_onesided: op.CanBool = True, | ||
| scaling: _Scaling = "density", | ||
| axis: op.CanIndex = -1, | ||
| average: _Average = "mean", | ||
| ) -> tuple[_Array_f8, _ArrayFloat]: ... | ||
| def csd( | ||
| x: Untyped, | ||
| y: Untyped, | ||
| fs: float = 1.0, | ||
| window: str = "hann", | ||
| nperseg: int | None = None, | ||
| noverlap: int | None = None, | ||
| nfft: int | None = None, | ||
| detrend: str | Literal[False] | UntypedCallable = "constant", | ||
| return_onesided: bool = True, | ||
| scaling: str = "density", | ||
| axis: int = -1, | ||
| average: str = "mean", | ||
| ) -> Untyped: ... | ||
| x: _ArrayLikeNumber_co, | ||
| y: _ArrayLikeNumber_co, | ||
| fs: AnyReal = 1.0, | ||
| window: _WindowLike = "hann", | ||
| nperseg: AnyInt | None = None, | ||
| noverlap: AnyInt | None = None, | ||
| nfft: AnyInt | None = None, | ||
| detrend: _Detrend = "constant", | ||
| return_onesided: op.CanBool = True, | ||
| scaling: _Scaling = "density", | ||
| axis: op.CanIndex = -1, | ||
| average: _Average = "mean", | ||
| ) -> tuple[_Array_f8, _ArrayComplex]: ... | ||
|
|
||
| # | ||
| @overload | ||
| # non-complex mode (positional and keyword) | ||
| def spectrogram( | ||
| x: _ArrayLikeNumber_co, | ||
| fs: AnyReal = 1.0, | ||
| window: _WindowLike = ("tukey", 0.25), | ||
| nperseg: AnyInt | None = None, | ||
| noverlap: AnyInt | None = None, | ||
| nfft: AnyInt | None = None, | ||
| detrend: _Detrend = "constant", | ||
| return_onesided: op.CanBool = True, | ||
| scaling: _Scaling = "density", | ||
| axis: op.CanIndex = -1, | ||
| mode: Literal["psd", "magnitude", "angle", "phase"] = "psd", | ||
| ) -> tuple[_Array_f8, _Array_f8, _ArrayFloat]: ... | ||
| @overload | ||
| # complex mode (positional) | ||
| def spectrogram( | ||
| x: _ArrayLikeNumber_co, | ||
| fs: AnyReal, | ||
| window: _WindowLike, | ||
| nperseg: AnyInt | None, | ||
| noverlap: AnyInt | None, | ||
| nfft: AnyInt | None, | ||
| detrend: _Detrend, | ||
| return_onesided: op.CanBool, | ||
| scaling: _Scaling, | ||
| axis: op.CanIndex, | ||
| mode: Literal["complex"], | ||
| ) -> tuple[_Array_f8, _Array_f8, _ArrayComplex]: ... | ||
| @overload | ||
| # complex mode (keyword) | ||
| def spectrogram( | ||
| x: Untyped, | ||
| fs: float = 1.0, | ||
| window: Untyped = ("tukey", 0.25), | ||
| nperseg: int | None = None, | ||
| noverlap: int | None = None, | ||
| nfft: int | None = None, | ||
| detrend: str | Literal[False] | UntypedCallable = "constant", | ||
| return_onesided: bool = True, | ||
| scaling: str = "density", | ||
| axis: int = -1, | ||
| mode: str = "psd", | ||
| ) -> Untyped: ... | ||
| def check_COLA(window: Untyped, nperseg: int, noverlap: int, tol: float = 1e-10) -> Untyped: ... | ||
| def check_NOLA(window: Untyped, nperseg: int, noverlap: int, tol: float = 1e-10) -> Untyped: ... | ||
| x: _ArrayLikeNumber_co, | ||
| fs: AnyReal = 1.0, | ||
| window: _WindowLike = ("tukey", 0.25), | ||
| nperseg: AnyInt | None = None, | ||
| noverlap: AnyInt | None = None, | ||
| nfft: AnyInt | None = None, | ||
| detrend: _Detrend = "constant", | ||
| return_onesided: op.CanBool = True, | ||
| scaling: _Scaling = "density", | ||
| axis: op.CanIndex = -1, | ||
| *, | ||
| mode: Literal["complex"], | ||
| ) -> tuple[_Array_f8, _Array_f8, _ArrayComplex]: ... | ||
|
|
||
| # | ||
| def check_COLA( | ||
| window: _WindowLike, | ||
| nperseg: AnyInt, | ||
| noverlap: AnyInt, | ||
| tol: AnyReal = 1e-10, | ||
| ) -> np.bool_: ... | ||
| def check_NOLA( | ||
| window: _WindowLike, | ||
| nperseg: AnyInt, | ||
| noverlap: AnyInt, | ||
| tol: AnyReal = 1e-10, | ||
| ) -> np.bool_: ... | ||
| def stft( | ||
| x: Untyped, | ||
| fs: float = 1.0, | ||
| window: str = "hann", | ||
| nperseg: int = 256, | ||
| noverlap: int | None = None, | ||
| nfft: int | None = None, | ||
| detrend: bool = False, | ||
| return_onesided: bool = True, | ||
| boundary: str = "zeros", | ||
| padded: bool = True, | ||
| axis: int = -1, | ||
| scaling: str = "spectrum", | ||
| ) -> Untyped: ... | ||
| x: _ArrayLikeNumber_co, | ||
| fs: AnyReal = 1.0, | ||
| window: _WindowLike = "hann", | ||
| nperseg: AnyInt = 256, | ||
| noverlap: AnyInt | None = None, | ||
| nfft: AnyInt | None = None, | ||
| detrend: _Detrend = False, | ||
| return_onesided: op.CanBool = True, | ||
| boundary: _Boundary = "zeros", | ||
| padded: op.CanBool = True, | ||
| axis: op.CanIndex = -1, | ||
| scaling: _LegacyScaling = "spectrum", | ||
| ) -> tuple[_Array_f8, _Array_f8, _ArrayComplex]: ... | ||
|
|
||
| # | ||
| @overload | ||
| # input_onesided is `True` | ||
| def istft( | ||
| Zxx: _ArrayLikeNumber_co, | ||
| fs: AnyReal = 1.0, | ||
| window: _WindowLike = "hann", | ||
| nperseg: AnyInt | None = None, | ||
| noverlap: AnyInt | None = None, | ||
| nfft: AnyInt | None = None, | ||
| input_onesided: Literal[True, 1] = True, | ||
| boundary: op.CanBool = True, | ||
| time_axis: op.CanIndex = -1, | ||
| freq_axis: op.CanIndex = -2, | ||
| scaling: _LegacyScaling = "spectrum", | ||
| ) -> tuple[_Array_f8, _ArrayFloat]: ... | ||
| @overload | ||
| # input_onesided is `False` (positional) | ||
| def istft( | ||
| Zxx: Untyped, | ||
| fs: float = 1.0, | ||
| window: str = "hann", | ||
| nperseg: int | None = None, | ||
| noverlap: int | None = None, | ||
| nfft: int | None = None, | ||
| input_onesided: bool = True, | ||
| boundary: bool = True, | ||
| time_axis: int = -1, | ||
| freq_axis: int = -2, | ||
| scaling: str = "spectrum", | ||
| ) -> Untyped: ... | ||
| Zxx: _ArrayLikeNumber_co, | ||
| fs: AnyReal, | ||
| window: _WindowLike, | ||
| nperseg: AnyInt | None, | ||
| noverlap: AnyInt | None, | ||
| nfft: AnyInt | None, | ||
| input_onesided: Literal[False, 0], | ||
| boundary: op.CanBool = True, | ||
| time_axis: op.CanIndex = -1, | ||
| freq_axis: op.CanIndex = -2, | ||
| scaling: _LegacyScaling = "spectrum", | ||
| ) -> tuple[_Array_f8, _ArrayComplex]: ... | ||
| @overload | ||
| # input_onesided is `False` (keyword) | ||
| def istft( | ||
| Zxx: _ArrayLikeNumber_co, | ||
| fs: AnyReal = 1.0, | ||
| window: _WindowLike = "hann", | ||
| nperseg: AnyInt | None = None, | ||
| noverlap: AnyInt | None = None, | ||
| nfft: AnyInt | None = None, | ||
| *, | ||
| input_onesided: Literal[False, 0], | ||
| boundary: op.CanBool = True, | ||
| time_axis: op.CanIndex = -1, | ||
| freq_axis: op.CanIndex = -2, | ||
| scaling: _LegacyScaling = "spectrum", | ||
| ) -> tuple[_Array_f8, _ArrayComplex]: ... | ||
|
|
||
| # | ||
| def coherence( | ||
| x: Untyped, | ||
| y: Untyped, | ||
| fs: float = 1.0, | ||
| window: str = "hann", | ||
| nperseg: int | None = None, | ||
| noverlap: int | None = None, | ||
| nfft: int | None = None, | ||
| detrend: str | Literal[False] | UntypedCallable = "constant", | ||
| axis: int = -1, | ||
| ) -> Untyped: ... | ||
| x: _ArrayLikeNumber_co, | ||
| y: _ArrayLikeNumber_co, | ||
| fs: AnyReal = 1.0, | ||
| window: _WindowLike = "hann", | ||
| nperseg: AnyInt | None = None, | ||
| noverlap: AnyInt | None = None, | ||
| nfft: AnyInt | None = None, | ||
| detrend: _Detrend = "constant", | ||
| axis: op.CanIndex = -1, | ||
| ) -> tuple[_Array_f8, _ArrayFloat]: ... | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,65 @@ | ||
| from typing import Literal, TypeAlias | ||
| from typing_extensions import assert_type | ||
|
|
||
| import numpy as np | ||
| import numpy.typing as npt | ||
| import optype.numpy as onpt | ||
| from scipy.signal import istft, spectrogram | ||
|
|
||
| _Array_f8: TypeAlias = npt.NDArray[np.float64] | ||
| _ArrayFloat: TypeAlias = npt.NDArray[np.float32 | np.float64 | np.longdouble] | ||
| _ArrayComplex: TypeAlias = npt.NDArray[np.complex64 | np.complex128 | np.clongdouble] | ||
|
|
||
| array_f8_1d: onpt.Array[tuple[Literal[256]], np.float64] | ||
| array_c16_1d: onpt.Array[tuple[Literal[256]], np.complex128] | ||
| spectrogram_mode_real: Literal["psd", "magnitude", "angle", "phase"] | ||
|
|
||
| # test spectrogram function overloads | ||
| assert_type(spectrogram(array_f8_1d), tuple[_Array_f8, _Array_f8, _ArrayFloat]) | ||
| assert_type(spectrogram(array_f8_1d, mode=spectrogram_mode_real), tuple[_Array_f8, _Array_f8, _ArrayFloat]) | ||
| assert_type(spectrogram(array_f8_1d, mode="complex"), tuple[_Array_f8, _Array_f8, _ArrayComplex]) | ||
| assert_type( | ||
| spectrogram(array_f8_1d, 1.0, ("tukey", 2.5), None, None, None, "constant", True, "density", -1, "complex"), | ||
| tuple[_Array_f8, _Array_f8, _ArrayComplex], | ||
| ) | ||
|
|
||
| # test isft function overloads | ||
| assert_type(istft(array_c16_1d), tuple[_Array_f8, _ArrayFloat]) | ||
| assert_type(istft(array_c16_1d, input_onesided=True), tuple[_Array_f8, _ArrayFloat]) | ||
| assert_type(istft(array_c16_1d, 1.0, "hann", 256, 128, 256, False), tuple[_Array_f8, _ArrayComplex]) | ||
| assert_type( | ||
| istft(array_c16_1d, input_onesided=False, fs=1.0, window="hann", nperseg=256, noverlap=128, nfft=256), | ||
| tuple[_Array_f8, _ArrayComplex], | ||
| ) | ||
| assert_type( | ||
| istft( | ||
| array_c16_1d, | ||
| fs=2.0, | ||
| window=("tukey", 0.25), | ||
| nperseg=256, | ||
| noverlap=128, | ||
| nfft=256, | ||
| input_onesided=True, | ||
| boundary=False, | ||
| time_axis=-1, | ||
| freq_axis=0, | ||
| scaling="spectrum", | ||
| ), | ||
| tuple[_Array_f8, _ArrayFloat], | ||
| ) | ||
| assert_type( | ||
| istft( | ||
| array_c16_1d, | ||
| fs=2.0, | ||
| window=("tukey", 0.25), | ||
| nperseg=256, | ||
| noverlap=128, | ||
| nfft=256, | ||
| input_onesided=False, | ||
| boundary=False, | ||
| time_axis=0, | ||
| freq_axis=1, | ||
| scaling="spectrum", | ||
| ), | ||
| tuple[_Array_f8, _ArrayComplex], | ||
| ) |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.