Closed
Description
Checklist
- 1. I have searched related issues but cannot get the expected help.
- 2. The bug has not been fixed in the latest version.
- 3. Please note that if the bug-related issue you submitted lacks corresponding environment info and a minimal reproducible demo, it will be challenging for us to reproduce and resolve the issue, reducing the likelihood of receiving feedback.
- 4. If the issue you raised is not a bug but a question, please raise a discussion at https://github.com/sgl-project/sglang/discussions/new/choose Otherwise, it will be closed.
- 5. Please use English, otherwise it will be closed.
Describe the bug
With sglang 0.4.5.post3,when I turned on MTP for DeepSeek inference,the MMLU accuracy decreased sharply.
MTP | MMLU accuracy |
---|---|
on | 0.305 |
off | 0.861 |
Reproduction
Launch server with MTP:
# node0
python3 -m sglang.launch_server \
--attention-backend fa3 \
--speculative-algo NEXTN --speculative-draft /data/models/DeepSeek-R1-NextN --speculative-num-steps 4 --speculative-eagle-topk 2 --speculative-num-draft-tokens 6 \
--model-path /data/models/DeepSeek-R1/ \
--tp 16 \
--dist-init-addr 192.168.0.1:10240 \
--nnodes 2 --node-rank 0 --trust-remote-code \
--host 0.0.0.0 --port 8000 --mem-fraction-static 0.75 --disable-chunked-prefix-cache
Launch server without MTP:
# node0
python3 -m sglang.launch_server \
--attention-backend fa3 \
--model-path /data/models/DeepSeek-R1/ \
--tp 16 \
--dist-init-addr 192.168.0.1:10240 \
--nnodes 2 --node-rank 0 --trust-remote-code \
--host 0.0.0.0 --port 8000 --mem-fraction-static 0.75 --disable-chunked-prefix-cache
MMLU test:
python3 bench_sglang.py --nsub 10 --port 8000 --data_dir /data/datasets/mmlu
Environment
Python: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]
CUDA available: True
GPU 0,1,2,3,4,5,6,7: NVIDIA H20
GPU 0,1,2,3,4,5,6,7 Compute Capability: 9.0
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 12.4, V12.4.131
CUDA Driver Version: 535.161.08
PyTorch: 2.6.0+cu124
sglang: 0.4.5.post3
sgl_kernel: 0.0.9.post2
flashinfer: 0.1.6+cu124torch2.4
triton: 3.2.0
transformers: 4.51.1
torchao: 0.8.0
numpy: 1.26.4
aiohttp: 3.9.3
fastapi: 0.115.8
hf_transfer: 0.1.9
huggingface_hub: 0.30.2
interegular: 0.3.3
modelscope: 1.22.3
orjson: 3.10.15
outlines: 0.0.46
packaging: 23.2
psutil: 5.9.4
pydantic: 2.10.6
multipart: Module Not Found
zmq: Module Not Found
uvicorn: 0.34.0
uvloop: 0.21.0
vllm: 0.6.4.post1
xgrammar: 0.1.17
openai: 1.60.2
tiktoken: 0.7.0
anthropic: 0.45.2
litellm: 1.59.10
decord: 0.6.0
NVIDIA Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV18 NV18 NV18 NV18 NV18 NV18 NV18 SYS PIX NODE SYS SYS 0-89 0 N/A
GPU1 NV18 X NV18 NV18 NV18 NV18 NV18 NV18 SYS PIX NODE SYS SYS 0-89 0 N/A
GPU2 NV18 NV18 X NV18 NV18 NV18 NV18 NV18 SYS NODE PIX SYS SYS 0-89 0 N/A
GPU3 NV18 NV18 NV18 X NV18 NV18 NV18 NV18 SYS NODE PIX SYS SYS 0-89 0 N/A
GPU4 NV18 NV18 NV18 NV18 X NV18 NV18 NV18 SYS SYS SYS PIX NODE 90-179 1 N/A
GPU5 NV18 NV18 NV18 NV18 NV18 X NV18 NV18 SYS SYS SYS PIX NODE 90-179 1 N/A
GPU6 NV18 NV18 NV18 NV18 NV18 NV18 X NV18 SYS SYS SYS NODE PIX 90-179 1 N/A
GPU7 NV18 NV18 NV18 NV18 NV18 NV18 NV18 X SYS SYS SYS NODE PIX 90-179 1 N/A
NIC0 SYS SYS SYS SYS SYS SYS SYS SYS X SYS SYS SYS SYS
NIC1 PIX PIX NODE NODE SYS SYS SYS SYS SYS X NODE SYS SYS
NIC2 NODE NODE PIX PIX SYS SYS SYS SYS SYS NODE X SYS SYS
NIC3 SYS SYS SYS SYS PIX PIX NODE NODE SYS SYS SYS X NODE
NIC4 SYS SYS SYS SYS NODE NODE PIX PIX SYS SYS SYS NODE X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
NIC4: mlx5_4
Metadata
Metadata
Assignees
Labels
No labels