Closed
Description
Your current environment
The output of `python collect_env.py`
PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04 LTS (x86_64)
GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0
Clang version: Could not collect
CMake version: version 4.0.0
Libc version: glibc-2.35
Python version: 3.12.9 | packaged by Anaconda, Inc. | (main, Feb 6 2025, 18:56:27) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.4.0-153-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A800-SXM4-80GB
GPU 1: NVIDIA A800-SXM4-80GB
GPU 2: NVIDIA A800-SXM4-80GB
GPU 3: NVIDIA A800-SXM4-80GB
GPU 4: NVIDIA A800-SXM4-80GB
GPU 5: NVIDIA A800-SXM4-80GB
GPU 6: NVIDIA A800-SXM4-80GB
GPU 7: NVIDIA A800-SXM4-80GB
Nvidia driver version: 535.161.08
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 43 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 192
On-line CPU(s) list: 0-79
Off-line CPU(s) list: 80-191
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7643 48-Core Processor
CPU family: 25
Model: 1
Thread(s) per core: 2
Core(s) per socket: 48
Socket(s): 2
Stepping: 1
Frequency boost: enabled
CPU max MHz: 2300.0000
CPU min MHz: 1500.0000
BogoMIPS: 4591.58
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate sme ssbd mba sev ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca
Virtualization: AMD-V
L1d cache: 3 MiB (96 instances)
L1i cache: 3 MiB (96 instances)
L2 cache: 48 MiB (96 instances)
L3 cache: 512 MiB (16 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-47,96-143
NUMA node1 CPU(s): 48-95,144-191
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] flashinfer-python==0.2.2.post1+cu124torch2.6
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-ml-py==12.570.86
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pynvml==12.0.0
[pip3] pyzmq==26.4.0
[pip3] torch==2.6.0
[pip3] torchaudio==2.6.0
[pip3] torchvision==0.21.0
[pip3] transformers==4.51.1
[pip3] triton==3.2.0
[conda] flashinfer-python 0.2.2.post1+cu124torch2.6 pypi_0 pypi
[conda] numpy 1.26.4 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.6.2 pypi_0 pypi
[conda] nvidia-ml-py 12.570.86 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi
[conda] pynvml 12.0.0 pypi_0 pypi
[conda] pyzmq 26.4.0 pypi_0 pypi
[conda] torch 2.6.0 pypi_0 pypi
[conda] torchaudio 2.6.0 pypi_0 pypi
[conda] torchvision 0.21.0 pypi_0 pypi
[conda] transformers 4.51.1 pypi_0 pypi
[conda] triton 3.2.0 pypi_0 pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.8.2
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 NIC8 NIC9 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV8 NV8 NV8 NV8 NV8 NV8 NV8 NODE PXB PXB PXB SYS SYS PXB NODE SYS SYS 0-47 0 N/A
GPU1 NV8 X NV8 NV8 NV8 NV8 NV8 NV8 NODE PXB PXB PXB SYS SYS PXB NODE SYS SYS 0-47 0 N/A
GPU2 NV8 NV8 X NV8 NV8 NV8 NV8 NV8 PXB NODE NODE NODE SYS SYS NODE PXB SYS SYS 0-47 0 N/A
GPU3 NV8 NV8 NV8 X NV8 NV8 NV8 NV8 PXB NODE NODE NODE SYS SYS NODE PXB SYS SYS 0-47 0 N/A
GPU4 NV8 NV8 NV8 NV8 X NV8 NV8 NV8 SYS SYS SYS SYS NODE PXB SYS SYS PXB NODE 48-79 1 N/A
GPU5 NV8 NV8 NV8 NV8 NV8 X NV8 NV8 SYS SYS SYS SYS NODE PXB SYS SYS PXB NODE 48-79 1 N/A
GPU6 NV8 NV8 NV8 NV8 NV8 NV8 X NV8 SYS SYS SYS SYS PXB NODE SYS SYS NODE PXB 48-79 1 N/A
GPU7 NV8 NV8 NV8 NV8 NV8 NV8 NV8 X SYS SYS SYS SYS PXB NODE SYS SYS NODE PXB 48-79 1 N/A
NIC0 NODE NODE PXB PXB SYS SYS SYS SYS X NODE NODE NODE SYS SYS NODE PIX SYS SYS
NIC1 PXB PXB NODE NODE SYS SYS SYS SYS NODE X PIX PIX SYS SYS PIX NODE SYS SYS
NIC2 PXB PXB NODE NODE SYS SYS SYS SYS NODE PIX X PIX SYS SYS PIX NODE SYS SYS
NIC3 PXB PXB NODE NODE SYS SYS SYS SYS NODE PIX PIX X SYS SYS PIX NODE SYS SYS
NIC4 SYS SYS SYS SYS NODE NODE PXB PXB SYS SYS SYS SYS X NODE SYS SYS NODE PIX
NIC5 SYS SYS SYS SYS PXB PXB NODE NODE SYS SYS SYS SYS NODE X SYS SYS PIX NODE
NIC6 PXB PXB NODE NODE SYS SYS SYS SYS NODE PIX PIX PIX SYS SYS X NODE SYS SYS
NIC7 NODE NODE PXB PXB SYS SYS SYS SYS PIX NODE NODE NODE SYS SYS NODE X SYS SYS
NIC8 SYS SYS SYS SYS PXB PXB NODE NODE SYS SYS SYS SYS NODE PIX SYS SYS X NODE
NIC9 SYS SYS SYS SYS NODE NODE PXB PXB SYS SYS SYS SYS PIX NODE SYS SYS NODE X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
NIC4: mlx5_4
NIC5: mlx5_5
NIC6: mlx5_6
NIC7: mlx5_7
NIC8: mlx5_8
NIC9: mlx5_9
NCCL_IB_TC=186
NCCL_IB_PCI_RELAXED_ORDERING=1
NCCL_SOCKET_IFNAME=eth0
NCCL_NVLS_ENABLE=0
NCCL_IB_HCA==mlx5_6,mlx5_7,mlx5_8,mlx5_9
NCCL_IB_GID_INDEX=5
NCCL_PXN_DISABLE=1
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
NCCL_IB_QPS_PER_CONNECTION=8
NCCL_IB_TIMEOUT=21
LD_LIBRARY_PATH=/data/cuda/cuda-12.4/cuda/lib64:/usr/local/nvidia/lib64
NCCL_IB_DISABLE=0
NCCL_IB_RETRY_CNT=7
NCCL_CUMEM_ENABLE=0
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
I want to drop all the parameters of the LLM engine and then load it from another state dict. The following code shows that level 1 is OK, while level 2 is problematic (cannot load the weights properly).
import torch
import torch.distributed as dist
from vllm import SamplingParams, LLM
from functools import cached_property
class SleepLevelTwoWakeUpIssue:
model_path = "Qwen/Qwen2.5-7B-Instruct"
def run(self):
self.log("\033[91mRaw weights:\033[0m")
self.generate_and_print()
self.sleep_and_wake_up(1)
self.log("\033[91mAfter sleep level 1:\033[0m")
self.generate_and_print()
self.sleep_and_wake_up(1, load_weights=True)
self.log("\033[91mAfter sleep level 1 and load weights:\033[0m")
self.generate_and_print()
self.sleep_and_wake_up(2)
self.log("\033[91mAfter sleep level 2:\033[0m")
self.generate_and_print()
self.sleep_and_wake_up(2, load_weights=True)
self.log("\033[91mAfter sleep level 2 and load weights:\033[0m")
self.generate_and_print()
def generate_and_print(self):
prompts = [
"Hello, how are you?",
"France is famous for its",
"The capital of USA is",
]
sampling_params = SamplingParams(max_tokens=100, temperature=1.0, stop=["\n"], seed=0)
outputs = self.llm.generate(prompts, sampling_params=sampling_params)
for output in outputs:
self.log(output.outputs[0].text)
def sleep_and_wake_up(self, level: int, load_weights: bool = False):
self.llm.sleep(level=level)
self.llm.wake_up()
if load_weights:
model = self.llm.llm_engine.model_executor.driver_worker.worker.model_runner.model
# model.load_weights(weights=self.state_dict.items()) # This leads to the same results
named_parameters, named_buffers = self.named_parameters_and_named_buffers
for name, param in named_parameters:
model.load_weights(weights=[(name, param)])
for name, buffer in named_buffers:
model.load_weights(weights=[(name, buffer)])
def log(self, message: str):
if dist.get_rank() != 0:
return
print(message)
@cached_property
def state_dict(self):
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(self.model_path)
return model.state_dict()
@cached_property
def named_parameters_and_named_buffers(self):
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(self.model_path)
named_parameters = list(model.named_parameters())
named_buffers = list(model.named_buffers())
return named_parameters, named_buffers
@cached_property
def llm(self):
return LLM(
enable_sleep_mode=True,
model=self.model_path,
gpu_memory_utilization=0.8,
distributed_executor_backend="external_launcher",
tensor_parallel_size=4,
max_model_len=16384,
seed=0,
disable_custom_all_reduce=True,
dtype="bfloat16",
)
if __name__ == "__main__":
dist.init_process_group(backend="nccl")
torch.cuda.set_device(dist.get_rank())
SleepLevelTwoWakeUpIssue().run()
dist.destroy_process_group()
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.