Skip to content

[V1][Perf] Faster incremental detokenization #15137

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 16 commits into from
Apr 17, 2025
Merged
Show file tree
Hide file tree
Changes from 12 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion requirements/common.txt
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ tqdm
blake3
py-cpuinfo
transformers >= 4.48.2 # Required for Bamba model and Transformers backend.
tokenizers >= 0.19.1 # Required for Llama 3.
tokenizers >= 0.21.1 # Required for fast incremental detokenization.
protobuf # Required by LlamaTokenizer.
fastapi[standard] >= 0.115.0 # Required by FastAPI's form models in the OpenAI API server's audio transcriptions endpoint.
aiohttp
Expand Down
1 change: 1 addition & 0 deletions requirements/test.in
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@ mistral_common[opencv] >= 1.5.4 # required for pixtral test
datamodel_code_generator # required for minicpm3 test
lm-eval[api]==0.4.4 # required for model evaluation test
transformers==4.48.2
tokenizers==0.21.1
# quantization
bitsandbytes>=0.45.3
buildkite-test-collector==0.1.9
Expand Down
6 changes: 4 additions & 2 deletions requirements/test.txt
Original file line number Diff line number Diff line change
Expand Up @@ -599,8 +599,10 @@ tiktoken==0.7.0
# mistral-common
timm==1.0.11
# via -r requirements/test.in
tokenizers==0.21.0
# via transformers
tokenizers==0.21.1
# via
# -r requirements/test.in
# transformers
torch==2.6.0
# via
# -r requirements/test.in
Expand Down
192 changes: 137 additions & 55 deletions tests/tokenization/test_detokenize.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,14 +4,22 @@
from typing import Any, Optional

import pytest
from transformers import AutoTokenizer
from transformers import (AutoTokenizer, PreTrainedTokenizer,
PreTrainedTokenizerFast)

from vllm.inputs import token_inputs
from vllm.sequence import Logprob, SamplingParams, Sequence, SequenceGroup
from vllm.transformers_utils.detokenizer import (Detokenizer,
detokenize_incrementally)
from vllm.transformers_utils.detokenizer import Detokenizer
from vllm.transformers_utils.tokenizer_group import get_tokenizer_group
from vllm.transformers_utils.tokenizers.mistral import MistralTokenizer
from vllm.v1.engine import EngineCoreRequest
from vllm.v1.engine.detokenizer import (FastIncrementalDetokenizer,
IncrementalDetokenizer,
SlowIncrementalDetokenizer)

SPECIAL_TOKS_TRUTH = [
"Some text with adjacent special tokens <|padding|><|padding|><fim_prefix><fim_middle><fim_suffix>other text<fim_pad>", # noqa
]

TRUTH = [
"Hello here, this is a simple test",
Expand All @@ -22,7 +30,8 @@
# incomplete UTF-8 characters
# see https://github.com/vllm-project/vllm/pull/9625
"ပုံပြင်လေးပြောပြပါ်",
]
] + SPECIAL_TOKS_TRUTH

TOKENIZERS = [
"facebook/opt-125m",
"gpt2",
Expand All @@ -38,26 +47,37 @@
]


def _run_incremental_decode(tokenizer, all_input_ids,
skip_special_tokens: bool, starting_index: int):
decoded_text = ""
offset = 0
token_offset = 0
prev_tokens = None
for i in range(starting_index, len(all_input_ids)):
new_tokens, text, offset, token_offset = detokenize_incrementally(
tokenizer,
all_input_ids[:i + 1],
prev_tokens,
offset,
token_offset,
skip_special_tokens=skip_special_tokens)
decoded_text += text
if prev_tokens is None:
prev_tokens = new_tokens
else:
prev_tokens += new_tokens
return decoded_text
def _run_incremental_decode(tokenizer,
all_input_ids,
skip_special_tokens: bool,
starting_index: int,
spaces_between_special_tokens: bool = True,
fast: Optional[bool] = None):

prompt_token_ids = all_input_ids[:starting_index]

params = SamplingParams(
skip_special_tokens=skip_special_tokens,
spaces_between_special_tokens=spaces_between_special_tokens,
)
request = EngineCoreRequest("", "", prompt_token_ids, None, None, None,
params, None, 0.0, None)

if fast is None:
detokenizer = IncrementalDetokenizer.from_new_request(
tokenizer, request)
elif fast:
detokenizer = FastIncrementalDetokenizer(tokenizer, request)
else:
detokenizer = SlowIncrementalDetokenizer(tokenizer, request)

output_text = ""
for i, token_id in enumerate(all_input_ids[starting_index:]):
detokenizer.update([token_id], False)
finished = i == len(all_input_ids) - 1
output_text += detokenizer.get_next_output_text(finished, delta=True)

return output_text, detokenizer.output_token_ids


@pytest.fixture
Expand Down Expand Up @@ -85,11 +105,13 @@ def test_mistral_edge_case(tokenizer, truth):
starting_index = 0
all_input_ids = tokenizer(truth, add_special_tokens=False).input_ids

decoded_text = _run_incremental_decode(tokenizer,
all_input_ids,
skip_special_tokens=True,
starting_index=starting_index)
decoded_text, out_ids = _run_incremental_decode(
tokenizer,
all_input_ids,
skip_special_tokens=True,
starting_index=starting_index)
assert decoded_text == truth
assert out_ids == all_input_ids[starting_index:]


@pytest.fixture
Expand All @@ -106,40 +128,86 @@ def skip_special_tokens(request, tokenizer_name) -> Generator[bool, Any, None]:
@pytest.mark.parametrize("with_prompt", [True, False])
@pytest.mark.parametrize("tokenizer_name", TOKENIZERS)
@pytest.mark.parametrize("skip_special_tokens", (True, False), indirect=True)
def test_decode_streaming(tokenizer, truth, with_prompt, skip_special_tokens):
@pytest.mark.parametrize("spaces_between_special_tokens", (True, False))
@pytest.mark.parametrize("fast", (True, False))
def test_decode_streaming(tokenizer, truth, with_prompt, skip_special_tokens,
spaces_between_special_tokens, fast):
if fast and not isinstance(tokenizer, PreTrainedTokenizerFast):
pytest.skip()

if skip_special_tokens and not spaces_between_special_tokens:
pytest.skip()

if not fast and isinstance(tokenizer, PreTrainedTokenizerFast):
# Fix up inconsistency in fast/slow tokenizer behaviour.
tokenizer.add_special_tokens({
"additional_special_tokens": [
at for at in
tokenizer._tokenizer.get_added_tokens_decoder().values()
if at.special
]
})

extra_decode_args = {} if not isinstance(tokenizer, PreTrainedTokenizer) \
else {"spaces_between_special_tokens": spaces_between_special_tokens}

truth_tokens = tokenizer(truth, add_special_tokens=False).input_ids
if tokenizer.bos_token_id is not None:
truth_tokens.insert(0, tokenizer.bos_token_id)
truth_tokens.append(tokenizer.eos_token_id)

new_truth = tokenizer.decode(truth_tokens,
skip_special_tokens=skip_special_tokens,
**extra_decode_args)

if with_prompt:
truth_tokens = tokenizer(truth, add_special_tokens=False).input_ids
prompt_input_ids = truth_tokens[:len(truth) // 2]
generated_input_ids = truth_tokens[len(truth) // 2:]
num_prompt_tokens = len(
tokenizer(truth[:len(truth) // 2],
add_special_tokens=False).input_ids)
if tokenizer.bos_token_id is not None:
num_prompt_tokens += 1

prompt_input_ids = truth_tokens[:num_prompt_tokens]
generated_input_ids = truth_tokens[num_prompt_tokens:]
all_input_ids = prompt_input_ids + generated_input_ids
starting_index = len(prompt_input_ids)
prompt = tokenizer.decode(prompt_input_ids,
skip_special_tokens=skip_special_tokens)
generated = truth[len(prompt):]
skip_special_tokens=skip_special_tokens,
**extra_decode_args)

generated = new_truth[len(prompt):]
else:
generated = truth
generated = new_truth
starting_index = 0
all_input_ids = tokenizer(truth, add_special_tokens=False).input_ids
if skip_special_tokens:
if tokenizer.bos_token_id is not None:
all_input_ids = [tokenizer.bos_token_id] + all_input_ids
starting_index += 1
all_input_ids = all_input_ids + [tokenizer.eos_token_id]
all_input_ids = truth_tokens

decoded_text = _run_incremental_decode(
decoded_text, out_ids = _run_incremental_decode(
tokenizer,
all_input_ids,
skip_special_tokens=skip_special_tokens,
starting_index=starting_index)
starting_index=starting_index,
spaces_between_special_tokens=spaces_between_special_tokens,
fast=fast)

assert decoded_text == generated
assert out_ids == all_input_ids[starting_index:]

decoded_text = _run_incremental_decode(

@pytest.mark.parametrize("tokenizer_name", TOKENIZERS)
@pytest.mark.parametrize("fast", (True, False))
def test_oov_decode(tokenizer, fast):
if fast and not isinstance(tokenizer, PreTrainedTokenizerFast):
pytest.skip()

decoded_text, out_ids = _run_incremental_decode(
tokenizer, [len(tokenizer)],
skip_special_tokens=skip_special_tokens,
starting_index=starting_index)
skip_special_tokens=True,
starting_index=0,
spaces_between_special_tokens=True,
fast=fast)

assert decoded_text == ''
assert out_ids == [len(tokenizer)]


@pytest.fixture
Expand All @@ -165,15 +233,14 @@ def detokenizer(tokenizer_name: str) -> Detokenizer:
@pytest.fixture(name="complete_sequence_token_ids")
def create_complete_sequence_token_ids(complete_sequence: str,
tokenizer) -> list[int]:
complete_sequence_token_ids = tokenizer(complete_sequence).input_ids
return complete_sequence_token_ids
return tokenizer(complete_sequence, add_special_tokens=False).input_ids


def create_sequence(prompt_token_ids=None):
prompt_token_ids = prompt_token_ids or [1]
prompt_token_ids = prompt_token_ids or []
return Sequence(
seq_id=0,
inputs=token_inputs(prompt_token_ids, prompt="<s>"),
inputs=token_inputs(prompt_token_ids),
block_size=16,
)

Expand Down Expand Up @@ -224,7 +291,7 @@ def test_decode_sequence_logprobs(complete_sequence: str,
assert sequential_result == "".join(sequential_logprobs_text_chosen_token)
assert sequential_result != "".join(sequential_logprobs_text_other_token)

if skip_special_tokens:
if not skip_special_tokens:
# Text for logprobs for the chosen token should be the same as the
# generated text. Note that this will only be true if we skip
# special tokens.
Expand All @@ -233,10 +300,23 @@ def test_decode_sequence_logprobs(complete_sequence: str,

@pytest.mark.parametrize("complete_sequence", TRUTH)
@pytest.mark.parametrize("tokenizer_name", TOKENIZERS)
def test_decode_prompt_logprobs(complete_sequence_token_ids: list[int],
def test_decode_prompt_logprobs(complete_sequence: str,
complete_sequence_token_ids: list[int],
detokenizer: Detokenizer):

# We want to use skip_special_tokens=False here but Mistral tokenizers
# don't support that.
if complete_sequence not in SPECIAL_TOKS_TRUTH:
skip_special_tokens = True
elif not isinstance(detokenizer.tokenizer_group.get_lora_tokenizer(None),
MistralTokenizer):
skip_special_tokens = False
else:
pytest.skip("MistralTokenizers don't support "
"skip_special_tokens=False")
return
"""Verify Detokenizer decodes prompt logprobs correctly."""
sampling_params = SamplingParams(skip_special_tokens=True,
sampling_params = SamplingParams(skip_special_tokens=skip_special_tokens,
prompt_logprobs=1)

# Run sequentially.
Expand All @@ -256,8 +336,10 @@ def test_decode_prompt_logprobs(complete_sequence_token_ids: list[int],
# decoded_prompt_logprobs doesn't contain the first token.
token_ids = complete_sequence_token_ids
tokenizer = detokenizer.get_tokenizer_for_seq(seq)
text_full = tokenizer.decode(token_ids, skip_special_tokens=True)
text_first = tokenizer.decode(token_ids[0], skip_special_tokens=True)
text_full = tokenizer.decode(token_ids,
skip_special_tokens=skip_special_tokens)
text_first = tokenizer.decode(token_ids[0],
skip_special_tokens=skip_special_tokens)
text = text_full[len(text_first):]

# Text for logprobs for the chosen token should be the same as the
Expand Down
Loading