Skip to content

[BugFix][Frontend] Fix LLM.chat() tokenization #16081

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Apr 25, 2025
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 14 additions & 13 deletions vllm/entrypoints/llm.py
Original file line number Diff line number Diff line change
Expand Up @@ -247,8 +247,12 @@ def __init__(
self.request_counter = Counter()
self.default_sampling_params: Union[dict[str, Any], None] = None

def get_tokenizer(self) -> AnyTokenizer:
return self.llm_engine.get_tokenizer_group(TokenizerGroup).tokenizer
def get_tokenizer(
self,
lora_request: Optional[LoRARequest] = None,
) -> AnyTokenizer:
return self.llm_engine.get_tokenizer_group(
TokenizerGroup).get_lora_tokenizer(lora_request)

def set_tokenizer(self, tokenizer: AnyTokenizer) -> None:
tokenizer_group = self.llm_engine.get_tokenizer_group(TokenizerGroup)
Expand Down Expand Up @@ -686,7 +690,7 @@ def chat(
cast(list[ChatCompletionMessageParam], messages)
]

tokenizer = self.get_tokenizer()
tokenizer = self.get_tokenizer(lora_request)
model_config = self.llm_engine.get_model_config()
resolved_content_format = resolve_chat_template_content_format(
chat_template,
Expand All @@ -709,9 +713,8 @@ def chat(
content_format=resolved_content_format,
)

prompt_data: Union[str, list[int]]
if isinstance(tokenizer, MistralTokenizer):
prompt_data = apply_mistral_chat_template(
prompt_token_ids = apply_mistral_chat_template(
tokenizer,
messages=msgs,
chat_template=chat_template,
Expand All @@ -720,7 +723,7 @@ def chat(
continue_final_message=continue_final_message,
)
else:
prompt_data = apply_hf_chat_template(
prompt_str = apply_hf_chat_template(
tokenizer,
trust_remote_code=model_config.trust_remote_code,
conversation=conversation,
Expand All @@ -729,12 +732,12 @@ def chat(
add_generation_prompt=add_generation_prompt,
continue_final_message=continue_final_message,
)
# Special tokens are already included in chat templates so
# should not be added by the tokenizer in this case.
prompt_token_ids = tokenizer.encode(prompt_str,
add_special_tokens=False)

prompt: Union[TokensPrompt, TextPrompt]
if is_list_of(prompt_data, int):
prompt = TokensPrompt(prompt_token_ids=prompt_data)
else:
prompt = TextPrompt(prompt=prompt_data)
prompt = TokensPrompt(prompt_token_ids=prompt_token_ids)

if mm_data is not None:
prompt["multi_modal_data"] = mm_data
Expand Down Expand Up @@ -1023,8 +1026,6 @@ def _embedding_score(
if len(encoded_output_1) == 1:
encoded_output_1 = encoded_output_1 * len(encoded_output_2)

scores: list[PoolingRequestOutput] = []

scores = _cosine_similarity(tokenizer=tokenizer,
embed_1=encoded_output_1,
embed_2=encoded_output_2)
Expand Down