Skip to content

Revert "[megatron] fix: BF16 mode should use PAO as well" (#4234) #6296

Revert "[megatron] fix: BF16 mode should use PAO as well" (#4234)

Revert "[megatron] fix: BF16 mode should use PAO as well" (#4234) #6296

# # Tests layout
# Each folder under tests/ corresponds to a test category for a sub-namespace in verl. For instance:
# - `tests/trainer` for testing functionality related to `verl/trainer`
# - `tests/models` for testing functionality related to `verl/models`
# - ...
# There are a few folders with `special_` prefix, created for special purposes:
# - `special_distributed`: unit tests that must run with multiple GPUs
# - `special_e2e`: end-to-end tests with training/generation scripts
# - `special_npu`: tests for NPUs
# - `special_sanity`: a suite of quick sanity tests
# - `special_standalone`: a set of test that are designed to run in dedicated environments
# Accelerators for tests
# - By default tests are run with GPU available, except for the ones under `special_npu`, and any test script whose name ends with `on_cpu.py`.
# - For test scripts with `on_cpu.py` name suffix would be tested on CPU resources in linux environment.
# # Workflow layout
# All CI tests are configured by yaml files in `.github/workflows/`. Here's an overview of all test configs:
# 1. A list of always triggered CPU sanity tests: `check-pr-title.yml`, `secrets_scan.yml`, `check-pr-title,yml`, `pre-commit.yml`, `doc.yml`
# 2. Some heavy multi-GPU unit tests, such as `model.yml`, `vllm.yml`, `sgl.yml`
# 3. End-to-end tests: `e2e_*.yml`
# 4. Unit tests
# - `cpu_unit_tests.yml`, run pytest on all scripts with file name pattern `tests/**/test_*_on_cpu.py`
# - `gpu_unit_tests.yml`, run pytest on all scripts with file without the `on_cpu.py` suffix.
# - Since cpu/gpu unit tests by default runs all tests under `tests`, please make sure tests are manually excluded in them when
# - new workflow yaml is added to `.github/workflows`
# - new tests are added to workflow mentioned in 2.
name: checkpoint_converter
# latest version: Megatron-LM core_v0.14.0 https://github.com/NVIDIA/Megatron-LM/tree/core_v0.14.0
on:
# Trigger the workflow on push or pull request,
# but only for the main branch
push:
branches:
- main
- v0.*
pull_request:
branches:
- main
- v0.*
paths:
- "**/*.py"
# Other entrypoints
- "!examples/**"
- "!tests/**"
- "!verl/trainer/main_*.py"
- "!verl/trainer/fsdp_sft_trainer.py"
# Recipes
- "!recipe/**"
# FSDP
- "!verl/workers/**/*dp_*.py"
# Entrypoints
- ".github/workflows/checkpoint_converter.yml"
- ".github/workflows/e2e_ppo_trainer_megatron.yml"
- "examples/data_preprocess/gsm8k.py"
- "tests/special_e2e/run_ppo_trainer_megatron.sh"
- "verl/trainer/main_ppo.py"
- "verl/trainer/config/ppo_megatron_trainer.yaml"
# Cancel jobs on the same ref if a new one is triggered
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: ${{ github.ref != 'refs/heads/main' }}
# Declare permissions just read content.
permissions:
contents: read
env:
IMAGE: "verl-ci-cn-beijing.cr.volces.com/verlai/verl:sgl055.dev2"
DYNAMIC_RUNNER_ENDPOINT: "https://sd10g3clalm04ug7alq90.apigateway-cn-beijing.volceapi.com/runner"
jobs:
setup:
if: github.repository_owner == 'volcengine'
runs-on: ubuntu-latest
outputs:
runner-label: ${{ steps.create-runner.outputs.runner-label }}
mlp-task-id: ${{ steps.create-runner.outputs.mlp-task-id }}
steps:
- uses: actions/checkout@v4
- id: create-runner
uses: volcengine/vemlp-github-runner@v1
with:
mode: "create"
faas-url: "${{ env.DYNAMIC_RUNNER_ENDPOINT }}"
mlp-image: "${{ env.IMAGE }}"
checkpoint_converter:
needs: setup
runs-on: [ "${{ needs.setup.outputs.runner-label || 'L20x8' }}" ]
timeout-minutes: 20 # Increase this timeout value as needed
env:
HTTP_PROXY: ${{ secrets.PROXY_HTTP }}
HTTPS_PROXY: ${{ secrets.PROXY_HTTPS }}
NO_PROXY: "localhost,127.0.0.1"
HF_HUB_ENABLE_HF_TRANSFER: "0" # This is more stable
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
with:
fetch-depth: 0
- name: Install the current repository
run: |
pip3 install -e .[test]
# - name: Download Model to Use
# run: |
# huggingface-cli download Qwen/Qwen2.5-0.5B --local-dir ${HOME}/models/Qwen/Qwen2.5-0.5B
# huggingface-cli download deepseek-ai/deepseek-coder-1.3b-instruct --local-dir ${HOME}/models/deepseek-ai/deepseek-coder-1.3b-instruct
# export HF_HUB_OFFLINE=1
- name: Running Huggingface to Megatron dist_ckpt converter (Qwen/Qwen2.5-0.5B)
run: |
ray stop --force
python scripts/converter_hf_to_mcore.py --hf_model_path=${HOME}/models/Qwen/Qwen2.5-0.5B --output_path checkpoints/Qwen/Qwen2.5-0.5B --test
- name: Running Huggingface to Megatron dist_ckpt converter (deepseek-ai/deepseek-coder-1.3b-instruct)
run: |
ray stop --force
python scripts/converter_hf_to_mcore.py --hf_model_path=${HOME}/models/deepseek-ai/deepseek-coder-1.3b-instruct --output_path checkpoints/deepseek-ai/deepseek-coder-1.3b-instruct --test
- name: Clean up
run: |
rm -rf checkpoints
checkpoint_converter_large_moe_models:
needs: setup
runs-on: [ "${{ needs.setup.outputs.runner-label || 'L20x8' }}" ]
timeout-minutes: 30 # Increase this timeout value as needed
env:
HTTP_PROXY: ${{ secrets.PROXY_HTTP }}
HTTPS_PROXY: ${{ secrets.PROXY_HTTPS }}
NO_PROXY: "localhost,127.0.0.1"
HF_HUB_ENABLE_HF_TRANSFER: "0" # This is more stable
HF_ENDPOINT: "https://hf-mirror.com"
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
with:
fetch-depth: 0
- name: Install the current repository
run: |
pip3 install -e .[test]
# - name: Download Model to Use
# run: |
# huggingface-cli download Qwen/Qwen1.5-MoE-A2.7B-Chat --local-dir ${HOME}/models/Qwen/Qwen1.5-MoE-A2.7B-Chat
# export HF_HUB_OFFLINE=1
- name: Running Huggingface to Megatron dist_ckpt CPU converter (Qwen/Qwen1.5-MoE-A2.7B-Chat)
run: |
ray stop --force
python scripts/converter_hf_to_mcore.py --hf_model_path=${HOME}/models/Qwen/Qwen1.5-MoE-A2.7B-Chat --output_path checkpoints/Qwen/Qwen1.5-MoE-A2.7B-Chat --use_cpu_initialization
- name: Running distributed Huggingface to Megatron dist_ckpt CPU converter (Qwen/Qwen1.5-MoE-A2.7B-Chat)
run: |
ray stop --force
torchrun --nproc_per_node 8 --nnodes 1 scripts/converter_hf_to_mcore.py --hf_model_path=${HOME}/models/Qwen/Qwen1.5-MoE-A2.7B-Chat --output_path checkpoints/Qwen/Qwen1.5-MoE-A2.7B-Chat_dist --use_cpu_initialization
- name: clean up
run: |
rm -rf checkpoints
cleanup:
runs-on: ubuntu-latest
needs:
[
setup,
checkpoint_converter,
checkpoint_converter_large_moe_models
]
if: always()
steps:
- id: destroy-runner
uses: volcengine/vemlp-github-runner@v1
with:
mode: "destroy"
faas-url: "${{ env.DYNAMIC_RUNNER_ENDPOINT }}"
mlp-task-id: "${{ needs.setup.outputs.mlp-task-id }}"