Skip to content

Add DeepSeek-R1-0528 function call chat template #6725

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
May 29, 2025

Conversation

Xu-Wenqing
Copy link
Contributor

@Xu-Wenqing Xu-Wenqing commented May 29, 2025

Motivation

DeepSeek-R1-0528 model support function call, add function call chat template.

Modifications

add DeepSeek-R1-0528 chat template for function call.

Usage:

python -m sglang.launch_server ... --tool-call-parser deepseekv3 --chat-template ./examples/chat_template/tool_chat_template_deepseekr1.jinja

Checklist

Copy link

@gemini-code-assist gemini-code-assist bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Hello @Xu-Wenqing, I'm Gemini Code Assist1! I'm currently reviewing this pull request and will post my feedback shortly. In the meantime, here's a summary to help you and other reviewers quickly get up to speed!

Summary of Changes

Hello team, gemini-code-assist here to provide a summary of this pull request. This PR, currently in draft status, aims to integrate support for the DeepSeekR1-0528 model's function calling capabilities. It achieves this by adding a new Jinja chat template specifically designed to format messages according to the requirements of this model, including handling user, assistant, tool, and system roles, as well as the specific token sequences used for function calls and tool outputs.

Highlights

  • DeepSeekR1-0528 Support: Adds a new chat template specifically for the DeepSeekR1-0528 model to enable correct message formatting for function calling.
  • Function Calling Template: Implements the required message formatting for DeepSeekR1-0528's function calling mechanism, including handling tool calls and tool outputs using specific tokens and structures.
  • New Jinja Template File: Introduces a new Jinja file (examples/chat_template/tool_chat_template_deepseekr1.jinja) containing the chat formatting logic for the new model.

Changelog

  • examples/chat_template/tool_chat_template_deepseekr1.jinja
    • Added a new Jinja template file (tool_chat_template_deepseekr1.jinja) to define the chat format for the DeepSeekR1-0528 model.
    • Includes logic to process system messages and prepend them to the prompt (lines 5-14).
    • Appends tool descriptions to the system prompt if tools are provided (lines 17-28).
    • Formats user messages using the <|User|> token (lines 33-36).
    • Formats assistant messages containing tool calls using <|tool calls begin|>, <|tool call begin|>, <|tool sep|>, <|tool call end|>, and <|tool calls end|> tokens, including JSON arguments (lines 37-52).
    • Formats tool messages (outputs) using <|tool outputs begin|>, <|tool output begin|>, <|tool output end|>, and <|tool outputs end|> tokens (lines 65-73, 75-77).
    • Handles standard assistant responses, potentially stripping content before a </think> tag (lines 53-64).
    • Adds the <|Assistant|> token at the end if add_generation_prompt is true and the last message wasn't a tool output (lines 78-80).
Using Gemini Code Assist

The full guide for Gemini Code Assist can be found on our documentation page, here are some quick tips.

Invoking Gemini

You can request assistance from Gemini at any point in your pull request via creating an issue comment (i.e. comment on the pull request page) using either /gemini <command> or @gemini-code-assist <command>. Below is a summary of the supported commands.

Feature Command Description
Code Review /gemini review Performs a code review for the current pull request in its current state.
Pull Request Summary /gemini summary Provides a summary of the current pull request in its current state.
Comment @gemini-code-assist Responds in comments when explicitly tagged, both in issue comments and review comments.
Help /gemini help Displays a list of available commands.

Customization

To customize Gemini Code Assist for GitHub experience, repository maintainers can create a configuration file and/or provide a custom code review style guide (such as PEP-8 for Python) by creating and adding files to a .gemini/ folder in the base of the repository. Detailed instructions can be found here.

Limitations & Feedback

Gemini Code Assist is currently in preview and may make mistakes. Please leave feedback on any instances where its feedback is incorrect or counter productive. You can react with 👍 and 👎 on @gemini-code-assist comments to provide feedback.

You can also get AI-powered code generation, chat, as well as code reviews directly in the IDE at no cost with the Gemini Code Assist IDE Extension.


Template takes the chat,
Formats tokens, calls the tools,
Model speaks just right.

Footnotes

  1. Review the Privacy Notices, Generative AI Prohibited Use Policy, Terms of Service, and learn how to configure Gemini Code Assist in GitHub here. Gemini can make mistakes, so double check it and use code with caution.

Copy link

@gemini-code-assist gemini-code-assist bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Code Review

This pull request introduces a new Jinja chat template for DeepSeekR1-0528 with function calling. The template structure is similar to the existing deepseekv3 template, which is a good approach for consistency.

I've identified a couple of high-severity issues related to state management (ns.is_first and ns.is_output_first flags) that could lead to incorrect prompt formatting for conversations involving multiple tool calls or sequences of tool outputs. These need to be addressed.

Additionally, for this template to be usable by the sglang system, it will need to be registered in python/sglang/lang/chat_template.py, and a corresponding matching function should be added or updated if necessary. Unit tests for this new template would also be essential to ensure its correctness across various chat scenarios.

Overall, a good start, but the identified issues should be fixed before this can be merged.

Summary of Findings

  • State Management for Tool Calls: The template is missing crucial resets for ns.is_first and ns.is_output_first flags within assistant messages that initiate tool calls. This can lead to incorrect prompt formatting in conversations with multiple tool interactions. (High Severity)
  • Missing Newline at End of File: The Jinja template file tool_chat_template_deepseekr1.jinja is missing a newline character at the end of the file. While this is a minor stylistic issue, it's good practice to include one. (Low Severity - not commented directly due to review settings)
  • Template Registration and Testing: For the new template to be functional, it needs to be registered in python/sglang/lang/chat_template.py, and unit tests should be added to verify its behavior. (Out of scope for diff review, but important for PR completion)

Merge Readiness

This pull request is currently a draft and has a good foundation for adding the DeepSeekR1-0528 chat template. However, there are high-severity issues related to state management in the template that need to be addressed to ensure correct prompt generation. Additionally, the template needs to be integrated into the broader system (registration and testing) for it to be functional.

I recommend addressing the identified high-severity issues in the template code first. As I am an AI reviewer, I cannot approve pull requests. Please ensure further review and approval from project maintainers after the changes are made.

@Xu-Wenqing Xu-Wenqing changed the title [Draft] Add DeepSeekR1-0528 function call chat template Add DeepSeekR1-0528 function call chat template May 29, 2025
@Xu-Wenqing Xu-Wenqing marked this pull request as ready for review May 29, 2025 05:00
@Xu-Wenqing Xu-Wenqing changed the title Add DeepSeekR1-0528 function call chat template Add DeepSeek-R1-0528 function call chat template May 29, 2025
@zhyncs zhyncs merged commit f4d4f93 into sgl-project:main May 29, 2025
1 check passed
@Xu-Wenqing Xu-Wenqing deleted the dev/add_deepseek_r1_0528_template branch May 29, 2025 09:28
Layssy pushed a commit to Layssy/sglang-iaas that referenced this pull request Jun 9, 2025
xwu-intel pushed a commit to xwu-intel/sglang that referenced this pull request Jun 17, 2025
walker-ai pushed a commit to walker-ai/sglang that referenced this pull request Jul 8, 2025
Merge branch 'sgl_20250610_sync_tag047 of [email protected]:Theta/SGLang.git into main

https://code.alipay.com/Theta/SGLang/pull_requests/52


Reviewed-by: 剑川 <[email protected]>


* [Bugfix] Fix slice operation when chunk size mismatch (sgl-project#6697)
* [Bugfix] Fix ChatCompletion endpoint of mini_lb when stream is set (sgl-project#6703)
* [CI] Fix setup of disaggregation with different tp (sgl-project#6706)
* [PD] Remove Unnecessary Exception Handling for FastQueue.get() (sgl-project#6712)
* Fuse routed_scaling_factor in DeepSeek (sgl-project#6710)
* Overlap two kernels in DeepSeek with communication (sgl-project#6711)
* Minor refactor two-batch overlap (sgl-project#6682)
* Speed up when having padding tokens two-batch overlap (sgl-project#6668)
* [Feature] Support Flashinfer fp8 blockwise GEMM kernel on Blackwell (sgl-project#6479)
* Fix LoRA bench (sgl-project#6719)
* temp
* Fix PP for Qwen3 MoE (sgl-project#6709)
* [feat] triton kernel for get_last_loc (sgl-project#6676)
* [fix] more mem for draft_extend cuda_graph (sgl-project#6726)
* [PD] bug fix:  Update status if nixl receiver send a a dummy req. (sgl-project#6720)
* Tune memory arguments on B200 (sgl-project#6718)
* Add DeepSeek-R1-0528 function call chat template (sgl-project#6725)
* refactor(tool call): Fix BaseFormatDetector tool_index issue and refactor `parse_streaming_increment` (sgl-project#6715)
* Add draft extend CUDA graph for Triton backend (sgl-project#6705)
* refactor apply_w8a8_block_fp8_linear in fp (sgl-project#6545)
* [PD] Support completion endpoint (sgl-project#6729)
* PD Rust LB (PO2) (sgl-project#6437)
* Super tiny enable sole usage of expert distribution metrics and update doc (sgl-project#6680)
* Support picking variants of EPLB algorithms (sgl-project#6728)
* Support tuning DeepEP configs (sgl-project#6742)
* [test] add ut and bm for get_last_loc (sgl-project#6746)
* Fix mem_fraction_static for AMD CI (sgl-project#6748)
* [fix][RL] Fix DeepSeekV3ForCausalLM.post_load_weights for multiple update weight (sgl-project#6265)
* Improve EPLB logical to physical dispatch map (sgl-project#6727)
* Update DeepSeek-R1-0528 function call chat template (sgl-project#6765)
* [PD] Optimize time out logic and add env var doc for mooncake (sgl-project#6761)
* Fix aiohttp 'Chunk too big' in bench_serving (sgl-project#6737)
* Support sliding window in triton backend (sgl-project#6509)
* Fix shared experts fusion error (sgl-project#6289)
* Fix one bug in the grouped-gemm triton kernel (sgl-project#6772)
* update llama4 chat template and pythonic parser (sgl-project#6679)
* feat(tool call): Enhance Llama32Detector for improved JSON parsing in non-stream (sgl-project#6784)
* Support token-level quantization for EP MoE (sgl-project#6782)
* Temporarily lower mmlu threshold for triton sliding window backend (sgl-project#6785)
* ci: relax test_function_call_required (sgl-project#6786)
* Add intel_amx backend for Radix Attention for CPU (sgl-project#6408)
* Fix incorrect LoRA weight loading for fused gate_up_proj (sgl-project#6734)
* fix(PD-disaggregation): Can not get local ip (sgl-project#6792)
* [FIX] mmmu bench serving result display error (sgl-project#6525) (sgl-project#6791)
* Bump torch to 2.7.0 (sgl-project#6788)
* chore: bump sgl-kernel v0.1.5 (sgl-project#6794)
* Improve profiler and integrate profiler in bench_one_batch_server (sgl-project#6787)
* chore: upgrade sgl-kernel v0.1.5 (sgl-project#6795)
* [Minor] Always append newline after image token when parsing chat message (sgl-project#6797)
* Update CI tests for Llama4 models (sgl-project#6421)
* [Feat] Enable PDL automatically on Hopper architecture (sgl-project#5981)
* chore: update blackwell docker (sgl-project#6800)
* misc: cache is_hopper_arch (sgl-project#6799)
* Remove contiguous before Flashinfer groupwise fp8 gemm (sgl-project#6804)
* Correctly abort the failed grammar requests & Improve the handling of abort (sgl-project#6803)
* [EP] Add cuda kernel for moe_ep_pre_reorder (sgl-project#6699)
* Add draft extend CUDA graph for flashinfer backend  (sgl-project#6805)
* Refactor CustomOp to avoid confusing bugs (sgl-project#5382)
* Tiny log prefill time (sgl-project#6780)
* Tiny fix EPLB assertion about rebalancing period and recorder window size (sgl-project#6813)
* Add simple utility to dump tensors for debugging (sgl-project#6815)
* Fix profiles do not have consistent names (sgl-project#6811)
* Speed up rebalancing when using non-static dispatch algorithms (sgl-project#6812)
* [1/2] Add Kernel support for Cutlass based Fused FP4 MoE (sgl-project#6093)
* [Router] Fix k8s Service Discovery (sgl-project#6766)
* Add CPU optimized kernels for topk and rope fusions  (sgl-project#6456)
* fix new_page_count_next_decode (sgl-project#6671)
* Fix wrong weight reference in dynamic EPLB (sgl-project#6818)
* Minor add metrics to expert location updater (sgl-project#6816)
* [Refactor] Rename `n_share_experts_fusion` as `num_fused_shared_experts` (sgl-project#6735)
* [FEAT] Add transformers backend support  (sgl-project#5929)
* [fix] recover auto-dispatch for rmsnorm and rope (sgl-project#6745)
* fix ep_moe_reorder kernel bugs (sgl-project#6858)
* [Refactor] Multimodal data processing for VLM (sgl-project#6659)
* Decoder-only Scoring API (sgl-project#6460)
* feat: add dp-rank to KV events (sgl-project#6852)
* Set `num_fused_shared_experts` as `num_shared_experts` when shared_experts fusion is not disabled (sgl-project#6736)
* Fix one missing arg in DeepEP (sgl-project#6878)
* Support LoRA in TestOpenAIVisionServer and fix fused kv_proj loading bug. (sgl-project#6861)
* support 1 shot allreduce  in 1-node and 2-node using mscclpp (sgl-project#6277)
* Fix Qwen3MoE missing token padding optimization (sgl-project#6820)
* Tiny update error hints (sgl-project#6846)
* Support layerwise rebalancing experts (sgl-project#6851)
* Tiny allow profiler API to auto create directory (sgl-project#6865)
* Support Blackwell DeepEP docker images (sgl-project#6868)
* [EP] Add cuda kernel for moe_ep_post_reorder (sgl-project#6837)
* [theta]merge 0605
* oai: fix openAI client error with single request via batch api (sgl-project#6170)
* [PD] Fix potential perf spike caused by tracker gc and optimize doc (sgl-project#6764)
* Use deepgemm instead of triton for fused_qkv_a_proj_with_mqa (sgl-project#6890)
* [CUTLASS-FP4-MOE]  Introduce CutlassMoEParams class for easy initialization of Cutlass Grouped Gems Metadata (sgl-project#6887)
* bugfix(OAI): Fix image_data processing for jinja chat templates (sgl-project#6877)
* [CPU] enable CI for PRs, add Dockerfile and auto build task (sgl-project#6458)
* AITER backend extension and workload optimizations (sgl-project#6838)
* [theta]merge
* [theta]merge
* [Feature] Support Flashinfer fmha on Blackwell (sgl-project#6930)
* Fix a bug in abort & Improve docstrings for abort (sgl-project#6931)
* Tiny support customize DeepEP max dispatch tokens per rank (sgl-project#6934)
* Sync the changes on cuda graph runners (sgl-project#6932)
* [PD] Optimize transfer queue forward logic for dummy rank (sgl-project#6922)
* [Refactor] image data process in bench_serving (sgl-project#6879)
* [fix] logical_to_all_physical_map index 256 is out of bounds in EP parallel. (sgl-project#6767)
* Add triton fused moe kernel config for E=257 on B200 (sgl-project#6939)
* [sgl-kernel] update deepgemm (sgl-project#6942)
* chore: bump sgl-kernel v0.1.6 (sgl-project#6943)
* Minor compile fused topk (sgl-project#6944)
* [Bugfix] pipeline parallelism and Eagle Qwen2 (sgl-project#6910)
* Tiny re-introduce profile id logging (sgl-project#6912)
* Add triton version as a fused_moe_triton config search key to avoid performace decrease in different Triton version (sgl-project#5955)
* reduce torch.zeros overhead in moe align block size kernel (sgl-project#6369)
* chore: upgrade sgl-kernel v0.1.6 (sgl-project#6945)
* add fbgemm moe grouped gemm kernel benchmark (sgl-project#6924)
* [Docker] Add docker file for SGL Router (sgl-project#6915)
* Disabling mixed chunked prefill when eagle is enabled (sgl-project#6874)
* Add canary for EPLB rebalancing (sgl-project#6895)
* Refactor global_server_args_dict (sgl-project#6866)
* Fuse routed scaling factor in topk_reduce kernel (sgl-project#6220)
* Update server timeout time in AMD CI. (sgl-project#6953)
* [misc] add is_cpu() (sgl-project#6950)
* Add H20 fused MoE kernel tuning configs for DeepSeek-R1/V3 (sgl-project#6885)
* Add a CUDA kernel for fusing mapping and weighted sum for MoE. (sgl-project#6916)
* chore: bump sgl-kernel v0.1.6.post1 (sgl-project#6955)
* chore: upgrade sgl-kernel v0.1.6.post1 (sgl-project#6957)
* [DeepseekR1-FP4] Add Support for nvidia/DeepSeekR1-FP4 model (sgl-project#6853)
* Revert "Fuse routed scaling factor in topk_reduce kernel (sgl-project#6220)" (sgl-project#6968)
* [AMD] Add more tests to per-commit-amd (sgl-project#6926)
* chore: bump sgl-kernel v0.1.7 (sgl-project#6963)
* Slightly improve the sampler to skip unnecessary steps (sgl-project#6956)
* rebase h20 fused_moe config (sgl-project#6966)
* Fix CI and triton moe Configs (sgl-project#6974)
* Remove unnecessary kernels of num_token_non_padded (sgl-project#6965)
* Extend cuda graph capture bs for B200 (sgl-project#6937)
* Fuse routed scaling factor in deepseek (sgl-project#6970)
* Sync cuda graph runners (sgl-project#6976)
* Fix draft extend ut stability with flush cache (sgl-project#6979)
* Fix triton sliding window test case (sgl-project#6981)
* Fix expert distribution dumping causes OOM (sgl-project#6967)
* Minor remove one kernel for DeepSeek (sgl-project#6977)
* [perf][sgl-kernel] extend cutlass_mla_decode to support num_head < 128 (sgl-project#6929)
* Enable more unit tests for AMD CI. (sgl-project#6983)
* Use torch.compile to fuse flash attention decode metadata preparation (sgl-project#6973)
* Eliminate stream sync to speed up LoRA batch init  (sgl-project#6960)
* support qwen3 emebedding (sgl-project#6990)
* Fix torch profiler bugs for bench_offline_throughput.py (sgl-project#6557)
* chore: upgrade flashinfer v0.2.6.post1 jit (sgl-project#6958)
* cleanup tmp dir (sgl-project#7007)
* chore: update pr test xeon (sgl-project#7008)
* Fix cutlass MLA gets almost zero accuracy (sgl-project#6998)
* Update amd nightly models CI. (sgl-project#6992)
* feat: add direct routing strategy to DP worker (sgl-project#6884)
* Fallback to lower triton version for unfound fused moe configs (sgl-project#7013)
* Fix torchvision version for Blackwell (sgl-project#7015)
* Simplify prepare_extend_after_decode (sgl-project#6987)
* Migrate to assertEqual (sgl-project#6741)
* Fix torch version in blackwell dockerfile (sgl-project#7017)
* chore: update pr test xeon (sgl-project#7018)
* Update default settings for blackwell (sgl-project#7023)
* Support both approximate and exact expert distribution collection (sgl-project#6964)
* Add decode req pool (sgl-project#6980)
* [theta]merge 0610
* [theta]merge 0610
* [CI] Add CI workflow for sgl-router docker build (sgl-project#7027)
* Fix fused_moe triton configs (sgl-project#7029)
* CPU: map changes from developing branch in sgl-kernel (sgl-project#6833)
* chore: bump v0.4.7 (sgl-project#7038)
* Update README.md (sgl-project#7040)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants